• Title/Summary/Keyword: Solar Energy Utilization System

Search Result 131, Processing Time 0.022 seconds

Economic Estimation of Heat Storage Type Geothermal source Heat Pump System Adopted in Government office Building by a Payback Period Method (투자비회수기간법을 이용한 공공청사 적용 축열식 지열히트펌프 시스템의 경제성 평가)

  • Ko, Myung-Jin;Oh, Jung-Keun;Kim, Yong-In;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.175-182
    • /
    • 2007
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. As a result Geothermal Source Heat Pump System (GSHPs) was being recognized effective alternative systems to conventional heating and cooling systems owing to their higher energy utilization efficiency. But GSHPs has not been popularized thereby the large amount of initial cost of the system and insufficiency of studies for economic estimation. Therefore GSHPs are being developed to make up for the weak points that are the large amount of initial cost of the system and much annual electricity consumption. In this paper, economic estimation was conducted by payback period method and it shows that the pay back period of Heat Storage Type GSHPs was calculated 6.8 years compared with the absorption Chiller-Heater system and 8.2 years compared with the Ice storage-Boiler system. Heat Storage Type GSHPs also has the lower annual source energy consumption than the conventional heating and cooling systems because of using nighttime electricity.

Performance Analysis of a Panel Type Latent Heat Storage Equipment for Solar Thermal Storage (태양열저장(太陽熱貯藏)을 위한 평판형잠열축열장치(平板形潛熱蓄熱裝置)의 성능분석(性能分析))

  • Kim, Y.B.;Ju, E.S.;Yun, Y.D.;La, W.J.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.290-297
    • /
    • 1991
  • For the efficient utilization of the solar thermal energy to overcome the time gap between to supply and demand, an efficient heat storage technique, especially high density-latent-heat storage system, is necessary. In this study, the performance of a panel type latent heat storage equipment during heat discharging process was analyzed theoretically and experimentally. In order to find out the performance of the system, computer simulation programs were developed by finite difference method. The governing equations were constructed by two dimensional heat conduction model with moving boundary. The results of the experimental and the theoretical analysis were reasonably well agreed. The efficiencies of the double pipe type and the panel type latent heat storage equipment were compared.

  • PDF

The Study on Efficiency Improvement of Thermal Storage Tank for Solar Combined Heating System (태양열 난방 일체형 복합시스템의 축열조 효율개선에 관한 연구)

  • Lyu, Nam-Jin;Ko, Kwang-Soo;Han, Yu-Ri;Park, Youn-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.188-192
    • /
    • 2006
  • This study is conducted to improve efficiency of thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from solar or the others heat sources. However, it has difficulties in storing heat with uniform temperature through the entire tank with respect to vertical direction. This kind of maldistribution of the supplied heat to the storage tank effects on the system performance. In this study is focused on utilization of the thermal stratification to improve thermal comfort for people in the house. To enhance temperature stratification of the tank, a distributor was designed and Installed in the middle of the tank. The distributor is supplies hottest water to the top side of the tank which is very close to inlet of the supply line to the heating load. The hottest water that is accumulated on top side of the tank is firstly supplied to the load with higher temperature. Reminder water takes a little time to warming up until desired supply temperature reached. This kind alternating selection of the supply temperature is improve thermal comfort with moderated system performance.

  • PDF

A Beach Parasol-Type Solar Power System for Utilization of Renewal Energy (신재생 에너지 활용을 위한 백사장 그늘막 태양광 발전 시스템)

  • Lee, Jae-Min;Lee, Chang-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.166-169
    • /
    • 2007
  • 본 논문에서는 신재생 에너지 활용을 위한 백사장 그늘막 겸용 태양광 발전 시스템을 제안한다. 영동지역(경포대 해수욕장)에 시스템을 설계 제작하여 설치하고 전력 생산능력과 발전 성능 및 그늘막 이용도를 조사하였다. 제안하는 발전 시스템은 상용전원과 연계하는 방식으로서 해수욕장을 중심으로 한 최대 전력 수요기의 신재생 에너지 활용방안으로서 매우 유용함을 확인하였다.

  • PDF

Problem and Solution of Wind Farm based on Distribution Power system (계통측에서 본 풍력발전단지 도입에 따른 해결과제 및 대책연구)

  • Yoon, G.G.;Park, S.M.;Hyu, E.;Jung, S.B.;Kim, H.P.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.488-490
    • /
    • 2001
  • A dispered power system means a little bit of small power generation equipment located near the power-damend areas. Due to no power supply line, such a power source is very favorable for the decrease in loss of electric power supply, in comparison to the giantly focused power source, Because of small power source, this power source also corresponds promptly to the variation of power demend. On the basis of energy saving, environmental reservation, and utilization of natural or unused energy, solar power plants can be introduced into the residence section of cities and small water or wind-power plants near the urban areas. In case of Korea, some wind farm have been introduced into Cheju island, Condensed introduction of several small power sources into an used distribution line may, however, result in a big problem, it is, therefore, necessary that protective-cooporative plans between power quality and distribution line should be introduced for efficient utilization of KEPCO distribution system.

  • PDF

A Study on the Application of Small Wind Power System in Apartment Housing (공동주택에서의 소형풍력발전시스템 적용에 관한 연구)

  • Park, Jin-Chul;Kyung, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.21-34
    • /
    • 2003
  • This study aims to present the applicability of wind turbine generator system to urban buildings for the utilization of clean renewable energy. The results are as follows; According to the wind resource analysis, it has been found that small sized wind power system can be viable for buildings application due to the amplification of wind velocity around buildings or building clusters, in spite of low mean velocity of 2-3m/s in Seoul and Kyunggi urban areas. But planners must perform micrositing analysis around building so that wind turbine can be located at high velocity zones. The system must be designed to avoid obstacles preventing prevailing wind in buildings. It should be recognized that wind speeds are changing depending on the height and length from buildings. The wind power system can be used as a symbol of landmark which shows a sustainable architecture from the scenary Itself A case study for apartment building in urban showed that wind power systems can be applicable in two kinds of place, rooftops and ground levels. Especially, the wind power systems must be carefully positioned so that wind resources do not decrease when it is installed at ground levels. and according to life cycle cost analysis, adaption of new small win4 power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building height. This research will ultimately achieve green architecture that preserves nature and at the same time provides pleasant environment to humans, and will play a great role in establishing the environment-preserving sustainable architecture of the 21th century.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

A Study on Optimal Capacity of Energy Storage System in Renewable Energy Based Micorgrids (신재생에너지가 연계된 마이크로그리드에서 에너지 저장장치의 최적 용량 선정에 관한 연구)

  • Kim, Wook-Won;Lee, Nam-Hyung;Lee, Yun-Sung;Shin, Je-Seok;Kim, Jin-O
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.529-533
    • /
    • 2012
  • By introducing RPS(Renewable Portfolio Standard) for reduction of greenhouse gas, Renewable energy sources have becoming widespread gradually. However, Renewable energy sources, such as wind power and PV are difficult to control the output and they have intermittent characteristics of the output. These characteristics would cause some problems when it is connected in the power system. In order to solve these problems, Energy Storage Systems(ESS) are considered to use. Although there are many different storage devices, the utilization of Secondary Battery is the one of the best ways to stabilize an output fluctuation of RES because of its fast responsibility. For that reason, it would better fit a large-capacity of Secondary battery for stabilization. However, batteries cannot be installed with a large capacity blindly because of its expensive cost. So to select proper capacity of the battery is an important consideration. This paper presented a methodology for the optimal capacity and operation of ESS in microgrids.

  • PDF

A Portable Hybrid Solar-Wind Power Generation System for Utilization of Renewal Energy (신재생에너지 활용을 위한 휴대용 태양광.풍력 복합 발전 시스템)

  • Lee, Chang-Sung;Lee, Jae-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.645-648
    • /
    • 2009
  • 본 논문에서는 신재생에너지 활용을 위한 휴대용 하이브리드 태양광 풍력 발전 시스템을 제안한다. 제안하는 태양광 풍력 복합 발전 시스템을 상용전기와 연계하여 사용할 경우를 고려하여 중대형 풍력 발전 시스템용 인버터와는 다른 특성이 요구되는 소형풍력 발전 시스템용 인버터와 독립형으로의 사용을 위해 축전지 충방전 컨트롤러를 개발한다. 20W의 Solar Power, 50W의 Wind Power, 1개의 Radio-recorder, 2개의 DC 7W/9W lamp. 축전지 Controller, 24H/40AH Maintenance-free battery 사양을 갖는 발전 시스템을 제작하고 필드 테스트를 통하여 성능을 검증한다.

  • PDF

Development of Small-capacity PCS for Personal Mobility Utilization (Personal Mobility 활용을 위한 소용량 PCS 개발)

  • Sun-Pil Kim;Kuk-Hyun Kim;Chang-Ho Lee;Le Tuan Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • This study conducted a study on a small-capacity PCS using lithium-ion batteries used in personal mobility. Most of the batteries in Personal Mobility only charge with external chargers and are used only as mobile energy sources. However, this paper aims to charge the battery of PM using PV and system power or to use the charged power as a stand-alone power supply. The developed PCS can be operated as a two-channel battery charger/discharger, a battery charger using solar power, and a stand-alone solar inverter depending on the operation method. The validity of the manufactured small-capacity PCS was verified through experiments.