• Title/Summary/Keyword: Solar Energy System

Search Result 2,602, Processing Time 0.03 seconds

Daily Operating Characteristics of Desalination System with Solar Energy (태양에너지 해수담수화 시스템 일일 운전 특성)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.262-265
    • /
    • 2009
  • This study was carried out to evaluate the clear day operating performances for the decentralized desalination system with the solar thermal system and the photovoltaic power system. In a clear day, we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system generation was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$, a $120m^3$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. In a clear day, solar irradiance daily averaged was measured $518W/m^3$, the daily fresh water yield showed that about 565 liter.

  • PDF

Grid Connected PV System with a Function to Suppress Disturbances caused by Solar-cell Array Instantaneous Output Power Fluctuation (태양전지어레이 순시 출력변동에 의한 외란의 억제기능을 갖는 계통연계형 태양광발전 시스템)

  • Kim, Hong-Sung;Choe, Gyu-Ha;Yu, Gwon-Jong
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.63-69
    • /
    • 1999
  • The conventional grid connected PV(Photovoltaic) system has a unstable output pattern due to its dependence on the weather condition, although solar-cell array averagely has a regular output characteristics to have a peak output nearly at noon. Therefore assuming the high density grid connection in the future, this unstable output pattern can be one of the main reasons to generate power disturbance such as voltage variation, frequency variation and harmonic voltage generation in low voltage distribution line. However general grid connected solar-cell system do not have functions to cope with these disturbances. Therefore this study proposed a advanced type grid connected PV system with functions to suppress output power fluctuation due to solar-cell array output variation and showed the levelling effect of fluctuation due to instantaneous array output variation.

  • PDF

Energy and Cost Efficiency on applying Solar Control Facade System (일사조절 장치 적용에 따른 에너지 및 비용효과 분석)

  • Ahn, Ki-Uhn;Kim, Seong-Jin;Kim, Dong-Hee;Moon, HyunSeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.98-99
    • /
    • 2013
  • Recently, solar control facade systems are highlighted due to its low cost and outstanding applicability for green remodeling. However, it has not been long time since the systems were introduced. Therefore, the application study of the solar control system also has been insufficient. In this study, simulated models were developed and three types of solar control systems(i.e., overhang, blind, and screen)are installed in the models. The efficiency of energy savings and investment payback period according to the application of solar control facade system were analyzed.

  • PDF

Controller Design of Stand-Alone Photovoltaic System with Charge-Discharge Controller for Remote lsland Power Supply

  • Kang, Ki-Hwan;Yu, Gwon-Jong;Song, Jinsoo;Jeong, Young-Seok;Kang, Ki-Hwan;Lee, Byoung-Ku;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.972-977
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. Therefore SPVS can be classified into variable types in accordance with connection method between battery and solar cell array. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell array and battery. Therefore SPVS with charge and discharge controller which can operate solar cell array at maximum power point is designed and experimented with a laboratory prototype.

  • PDF

Application of the Solar Chimney System for Improving the Thermal Environment in Winter (겨울철 건물 열환경 개선을 위한 태양굴뚝 시스템의 응용)

  • Oh, Ju-Hong;Kim, Eui-Jong;Lee, Hyun-Soo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2015
  • In this study, the solar chimney, one of the passive solar systems, is proposed as a method to improve the thermal environment of northern zones in buildings. As this well-known system has rarely been used in building projects, an adequate application of the system is proposed in this paper: the solar chimney system is designed to meet the required ventilation rate and consequently to reduce the ventilation load in the northern part of a building. To investigate such a possibility, a numerical model for the system is developed, and results of numerical tests are used for energy simulations. The results were taken into account for test simulations in EnergyPlus. As a result, approximately 75% of the volumetric ventilation rate required in the north zone could be supplied with the air volume acquired through the system and the monthly mean load was reduced by 29.5%, from 1.584 kWh to 1.117 kWh. The analyses of hourly mean heating and ventilation load over the heating period indicated that the system was very effective at around 13:00. Results show that 33% reduction in the ventilation load and 17% in the heating load for the north zone could be acquired through this system.

Analysis of Maximum Solar Radiation on Inclined Surfaces for the Installation of Solar Thermal Systems in Korea Using the Optimum Installation Angle (국내 태양열시스템 설치를 위한 시스템 최적 설치각 산출을 통한 최대 경사면일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The amount of incident rays over inclination according to direction has been widely utilized as important data m installing solar thermal systems. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized solar thermal systems will be provided for designers and employees working in the solar collector related industries.

Prediction Correlation of Solar Insolation using Relationships between Meteorological Data and Solar Insolation in 2012 (2012년 기상관측 결과와 한국형 수평면전일사량 예측식(I))

  • Kim, Ha-Yang;Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • To well design the solar energy system, the correlation to calculate and predict solar irradiation is basically needed. So, this study was performed to reveal the relationships between the solar irradiation and four meteorological observation data(dry-bulb temperature, relative humidity, duration of sunshine, and amount of cloud) that didn't show from previous any other researches. And then, we finally proposed the various order non-linear correlation from the measured solar irradiation and four meteorological measurement data using MINITAB. To show the deviation and accuracy of the solar irradiation between measured and calculated, this study compared for the daily total solar insolation. From those results, the calculation error could well predicted about maximum 97% for the daily total solar insolation. But, the coefficients of the proposed correlations didn't show any relationships. So, needs more studies to make the proper one correlation for the country.

Development of an Embedded Solar Tracker using LabVIEW (LabVIEW 적용 임베디드 태양추적장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • This paper introduces step by step procedures for the fabrication and operation of an embedded solar tracker. The system presented consists of application software, compactRIO, C-series interface module, analogue input module, step drive, step motor, feedback devices and other accessories to support its functional stability. CompactRIO that has a real-tim processor allows the solar tracker to be a stand-alone real time system which operates automatically without any external control. An astronomical method and an optical method were used for a high-precision solar tracker. CdS sensors are used to constantly generate feedback signals to the controller, which allow a solar tracker to track the sun even under adverse conditions. The database of solar position and sunrise and sunset time was compared with those of those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.