• 제목/요약/키워드: Solar Energy System

검색결과 2,602건 처리시간 0.024초

에너지 효율적 트리로터 수직이착륙 무인항공기 개발 (Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle)

  • 박희진;공동욱;손병락;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

태양열 구동 흡수식 냉동기의 기본설계 및 성능분석 (Basic Design and Performance Analysis of an Solar Absorption Chiller)

  • 백남춘;윤응상;주문창;정시영
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.107-112
    • /
    • 1998
  • Basic design of a solar driven absorption cooling machine(SDACM) with a cooling capacity of 5 USRT was carried out. The SDACM is a single effect cycle driven by low temperature hot water from solar collectors. The SDACM design data were calculated by the steady state simulation program which was developed in this study The variation of COP and cooling capacity of the SDACM were investigated at different off-design conditions. Both the cooling capacity and the system COP were improved with decreasing cooling water temperature. If hot water temperature was increased, the cooling capacity was improved but the system COP was found to be decreased. The decrease of the system COP were basically caused by increased thermal loads in the system components.

  • PDF

자연대류형 태양열온수기의 특성별 성능평가에 관한 연구 (Performance Ratings According to Characteristics of Thermosyphon Solar Hot Water System)

  • 강용혁;곽희열;유창균;윤환기;강명철;이동규
    • 태양에너지
    • /
    • 제20권2호
    • /
    • pp.9-17
    • /
    • 2000
  • To obtain thermal performance data, an experiment was performed with the two selected thermosyphon systems. The system parameters obtained by experimental data were used to perform TRNSYS simulation and verified TRNSYS model of thermosyphon solar hot water system. The thermosyphon solar hot water system was TYPE 145 which is modified from non-linear model. This model can describe heat exchange type and non-linear efficiency equation. It is possible to analyze the annual energy rate with efficiency equation and system specification. In this paper, we could compare the annual performance of the coil heat exchanger with that of the tank-in-tank heat exchanger. Under the same efficiency and parameter, heat exchange, drain, initial tank temperature, ratio of tank volume over collector area(V/Ac), regional annual performance rating were performed.

  • PDF

공동주택의 태양열 집열기 효율에 대한 실험적 연구 (An Experimental Study on the Solar Collector Efficiency for Apartment Building)

  • 최병도;김미연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.130.2-130.2
    • /
    • 2011
  • The application of solar energy in residential building is general and natural in today. And application methods of solar thermal energy is divided in two kind of form, single evacuated tube and flat-plate form. Then in this study, the efficiency of single evacuated tube and flat-plate system is compared by total and effective area considering the time receiving the solar radiation between 24 hours and the specific time(10:00~15:00). As a result of the experiment, single evacuated tube and flat-plate collector's efficiency is varied by the quantity of solar radiation. And especially, the flat-plate system is more affected by outdoor temperature. Therefore the application of solar thermal system should be considered the solar radiation and outdoor temperature.

  • PDF

태양에너지를 이용한 열-전기 동시생산을 위한 PV-Solarwall 단위모듈 성능평가 연구 (The Performance Evaluation Study of PV-Solarwall Unit Module Solar Thermal-Electric Energy)

  • 김용환;조일식;이의준;현명택;강은철
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.69-75
    • /
    • 2005
  • The PV-Solarwall system has been introduced as a promising alternative to harness solar energy for both heating applications and electricity generation simultaneously. The system comprises a PV solar panel(for electricity generation). In addition, the solarwall incorporates a fan strategically located behind the PV panel to bring the warm and fresh air from the solarwall into the room. Because of its location and convective cooling principle, the fan also serves to reduce the operating temperature of the PV panel thereby increasing its efficiency. So this PV-Solarwall system holds much promise for saving heating and electricity costs compared with a PV system without solarwall. In particular, by controlling the tilt angle of the entire PV-Solarwall system between $0^{\circ}$(horizontal) and $90^{\circ}$(vertical), the performance of the system can be further evaluated. It is expected that the range of tilt angle PV-Solarwall between $40^{\circ}$ and $50^{\circ}$ will improve the output of the system.

BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가 (Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System)

  • 박상미;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

인버터형 에어컨 전원용 태양광시스템의 MPPT 동작 특성에 관한 연구 (The Study on the Operating Characteristic of MPPT for Photovoltaic System with Inverter Type Airconditionig System)

  • 유권종;차인수;임중열;김동휘
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.129-135
    • /
    • 1998
  • A photovoltaic system is an infinite and clean energy system. A photovoltaic system consists of a solar cell array, a converter, a inverter and a control unit. It is necessary that the Maximum Power Point Tracker(MPPT) is applied to the photovoltaic system because the output power of solar cell array is varied with irradiation, temperature and external effects. In this paper, the neural networks theory, one of the control methods, is applied to track the maximum power point of the photovoltaic system. The MPPT using neural networks theory is proposed to improve existing energy converter efficiency. Also the theory is applied to operation of inverter type airconditionig system.

  • PDF

태양에너지 해수담수화 실증시스템 장기 운전 열성능 (Evaluation of long-term performance for single-stage desalination system with solar energy)

  • 곽희열;윤응상;주문창;주홍진
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

효율적 전력 관리를 위한 독립형 가로등의 ESS 설계 및 구현 (Design and Implementation of an ESS for Efficient Power Management of Stand-Alone Type Street Lights)

  • 강진구
    • 디지털산업정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2016
  • Several efforts to replace the use of existing fossil energy resources have already been made around the world. As a result, a new industry of renewable energy has been created, and efficient energy distribution and storage has been promoted intensively. Among the newly explored renewable energy sources, the most widely used one is solar energy generation, which has a high market potential. An energy storage system (ESS) is a system as required. In this paper, the design and implementation of an ESS for the efficient use of power in stand-alone street lights is presented. In current ESS applied to stand-alone street lights, either 12V~24V DC (from solar power) or 110V~220V AC (from commercial power) is used to recharge power in systems with lithium batteries. In this study, an ESS that can support both solar power and commercial power was designed and implemented; it can also perform emergency recharge of portable devices from solar powered street lights. This system can maximize the scalability of ESSes using lithium batteries with efficient energy conversion, with the advantage of being an eco-friendly technology. In a ripple effect, it can also be applied to smart grids, electric vehicles, and new, renewable storage markets where energy storage technology is required.

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF