• Title/Summary/Keyword: Solar Chamber

Search Result 92, Processing Time 0.034 seconds

Aerosol Jet Deposition을 이용한 기판 온도에 따른 $CuInS_2$ 박막 특성

  • Kim, Dong-Chan;Beon, Yeong;Gong, Seon-Mi;Jeong, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.160-160
    • /
    • 2011
  • I-III-VI족 화합물 반도체인 $CuInS_2$(CIS) 박막은 Cu(In,Ga)$Se_2$에 비해서 독성원소를 사용하지 않으므로 환경 친화적이고 Ga, Se를 사용하지 않아 조성의 조절이 쉬우며 태양전지의 이상적인 밴드갭인 1.5 eV에 근접한 1.53 eV의 직접천이형 에너지 밴드갭을 가지고 있어 태양전지의 광흡수층으로써 유망한 재료이다. CIS 박막 증착에는 다양한 방법이 있으며 본 연구에서는 chamber를 진공으로 만들고 CIS를 구성하는 용액으로부터 미립자화 된 입자를 노즐을 통하여 팽창시켜 에어로졸을 생성하고 입자들의 운동에너지를 증착에 직접 이용 할 수 있는 Aerosol Jet Deposition (AJD)라는 방법을 이용하려고 한다. 이 방법은 높은 증착속도로 우수한 박막을 성장시킬 수 있는 저비용 및 단순공정으로 CIS를 증착 할 수 있는 새로운 방법이다. 물을 용매로 하여 수용액 상태의 $CuCl_2{\cdot}2H_2O$, $InCl_3$, $(NH_2)_2CS$를 혼합하여 CIS 용액을 제조하고 carrier gas를 주입하여 CIS 용액을 노즐로 이동시켜 팽창시킨다. 용액이 팽창되면서 온도가 감소하여 응축이 일어나며 이 응축된 용액이 가열된 기판 위에 충돌하여 용매가 증발하면서 결정화된 CIS가 증착이 된다. CIS의 특성은 용액의 전구체 비율, 기판 온도, 팽창 전 압력, chamber 압력 등의 영향을 받는데 본 연구에서는 기판 온도를 증착변수로 선택하여 CIS 박막을 증착하고 박막의 특성을 고찰하고자 한다.

  • PDF

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

An Experimental Study on the Performance of Heat Pump Assisted Batch Dryer Using HFC134a (HFC134a를 사용한 열펌프 건조기의 성능에 관한 실험적 연구)

  • Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.3-11
    • /
    • 1997
  • In conventional heat and vent dryer, both sensible and latent heat could not be recovered from the exhaust air, but this problem could be solved by introducing a heat pump to a conventional dryer, having a connection with cooling, dehumidifying and heating of heat pump. In this work, HFC134a as a substitute refrigerant of CFC12 adopted in heat pump and a batch type is also introduced. The variables affected on the system performance are holding temperature of a drying chamber, bypass air ratio, degree of superheat and refrigerant flowrate, etc. The moisture contents were decreased curvilinearly in the range of $86{\sim}75%$ on the wet basis. Under the constant drying temperature, the face velocity plays an important role to the drying performance. The COPs are increased in accordance with the air velocity, on the other hand the SMERs are gradually decreased.

  • PDF

A Study on the Apparatus for Improving Boiler Efficiency (보일러의 효율향상(效率向上)을 위한 연소보조장치(燃燒補助裝置)에 관(關)한 연구(硏究) (연소실(練燒室) 모형(模型) 실험(實驗)))

  • Seoh, J.I.;Cho, J.H.;Lee, C.S.;Jo, J.C.
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.11-20
    • /
    • 1982
  • This paper presents the experimental investigations of a system as a second treatment means to increase boiler efficiency and heat transfer from combustion gas to heating surfaces in the case of spray combustion. In order to reburn residual combustible components accelerate the burning rate of sprayed fuel droplets, improve the diffusion flame and delay the residence time of the flame, advice with slit type nozzles for spouting preheated supplementary air is used in this study. In the experiment, boiler efficiency and smoke concentration in the exhaust gas at given conditions are measured in both case of installing and not-installing device in the model of combustion chamber which was designed to be equipped with five surfaces. The results obtained in this experiment are as follows ; 1. The optimum values of air rate ${\lambda}$ are about 1.3 in both case. 2. The exhaust gas temperature in the case with device increases about $30{\sim}70^{\circ}C$ above that of the case without the device. 3. Boiler efficiency and reduction effect of smoke emissions are improved considerably.

  • PDF

Some Features of Dye-sensitized Solar Cell Combining with Single-walled Carbon Nanotubes

  • Lee, Sanghun;Park, Hyunjune;Park, Taehee;Lee, Jongtaek;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.925-928
    • /
    • 2014
  • A dye-sensitized solar cell (DSSC) was fabricated with a nanocrystalline $TiO_2$ film electrode on FTO glass, N719 dye, electrolytes (or $CsSnI_3$), and counter Pt electrode by incorporating it with single-walled carbon nanotubes (SWNTs). SWNTs were combined with $TiO_2$ film, $CsSnI_3$, Pt electrode, separately, and the SWNT-containing cell was compared with a pristine cell in cell performance. We also examined the performance change by pressing $TiO_2$ film, during cell fabrication, inside a high pressure chamber. Mostly, the change of conversion efficiency was compared for each cell, and an atomic force microscopy data were suggested to explain our results.

Optical Characteristics of Oxygen-doped ZnTe Thin Films Deposited by Magnetron Sputtering Method

  • Kim, Seon-Pil;Pak, Sang-Woo;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.253-253
    • /
    • 2011
  • ZnTe semiconductor is very attractive a material for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. The optoelectronic properties of ZnTe:O film allow to expect a large optical gain in the intermediate emission band, which emission band lies about 0.4-0.6 eV below the conduction band of ZnTe [2]. So, the ZnTe system is useful for the production of high-efficiency multi-junction solar cells [2,3]. In this work, the ZnTe:O thin films were deposited on Al2O3 substrates by using the radio frequency magnetron sputtering system. Three sets of samples were prepared using argon and oxygen as the sputtering gas. The deposition chamber was pre-pumped down to a base pressure of 10-7 Torr before introducing gas. The deposition pressure was fixed at 10-3 Torr throughout this work. During the ZnTe deposition, the substrate temperature was 300 oC. The optical properties were also investigated by using the ultraviolte-visible (UV-Vis) spectrophotometer.

  • PDF

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Electrical properties of n-ZnO/p-Si heterojunction photovoltaic devices

  • Kang, Ji Hoon;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.1-306.1
    • /
    • 2016
  • ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.

  • PDF

CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G (수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구)

  • Joo, Hong-Jin;Jung, Il-Young;Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.