• Title/Summary/Keyword: Solar Cell charging

Search Result 44, Processing Time 0.026 seconds

Electric Power Charging of Silicon Solar Cells using a Laser (레이저 조사에 따른 실리콘 솔라셀의 출력 특성)

  • Lee, Hu-Seung;Bae, Han-Sung;Kim, Seongbeom;Joo, Yun-Jae;Kim, Jung-Oh;Noh, Ji-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

A Study on the Solar Cell Charging Equipment for Hybrid Vehicle (Hybrid 자동차용 Solar Cell 충전장치에 관한 연구)

  • Kim, G.S.;Park, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Hybrid car can improve fuel efficiency using a power of motor that is generated during constant-speed or deceleration driving. The motor is located between engine and transmission. But, when voltage of main battery is low, fuel efficiency is low because the voltage can't run the motor. In this situation, this study observed fuel efficiency when using solar cell for assistance power. In order to verify a fuel consumption of hybrid car equipped solar cell for assistance power, the car was tested downtown driving. As hybrid car was equipped solar cell for assistance, fuel consumption was reduced 8.35 % at running air conditioner. And, at air conditioner doesn't work, fuel consumption was reduced 6.88 %. This point of view, CO2 is expected to reduce in similar proportion.

Efficient Path Planning for Long Term Solar UAV Flight (태양광 에너지 무인항공기의 장기체공을 위한 경로 탐색)

  • Ryu, Hanseok;Byun, Heejae;Park, Sanghyuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • Sufficient energy charging during a day is essential for a solar-powered long-endurance aircraft. Variations of flight path that is superior to a basic circle path are sought in this study for more efficient charging. Flight path associated with roll and pitch attitudes are investigated. It seems that the pitch angle can play more important role than the roll angle for the solar charging efficiency. Thus, more energy charging is observed when the entire flight path is tilted toward the direction of the sun.

The Operating Characteristics of Tracking PV System Using Air Compress Energy Charging Method (공기압축 에너지저장방식의 추적식 태양광발전시스템 운전특성)

  • Park Jeong-Min;Kim Hyung-Suk;Baek Hyung-Lae;Cho Geum-Bae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1544-1546
    • /
    • 2004
  • This paper describes the element of solar cell's characteristics, photovoltaic system and solar tracking through experiment. Furthermore, it proposes the experiment results of the PV system is contained solar modules, power conditioning system and the solar tracking system using air compress charging energy The experimental results show that the PV system is always operated at maximum power of solar cells and tracking the sun in order to generate efficiently power generation and propose a capability of its application.

  • PDF

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

A study on energy harvesting time of Solar Cell battery for Sensor node (센서 노드 배터리 충전을 위한 Solar Cell의 완충시간에 대한 연구)

  • Choi, Young-Suk;Ryu, Jeong-Tak;Kim, Kyung-Ki;Kim, H.C.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Ubiquitous network and wireless sensor networks is being applied in various fields. Located at target areas, node of wireless sensor network uses batteries as a power source. Batteries have a limited energy in sensor network applications. Also, before use, the battery must be charged and It is difficult to replace the battery. Therefore, energy harvesting technology is being researched and being developed for long life of sensor node. Especially, sola energy is being extensively researched. because that can have great amounts of energy than other environmental energy in a short time. In this study, we tested battery charging and recharging, operation of sensor node using Solar Cell. Also, monitoring data gathering and voltage Analysis showed energy harvesting time of Sola Cell battery for sensor node and operation of sensor node.

A Efficient MPPT Control Algorithm for LED Street Lighting System using Photovoltaic Systems (태양광을 이용한 LED가로등 시스템을 위한 효율적인 MPPT 충전제어 알고리즘)

  • Kim, Byun-gon;Jeong, Dong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.675-676
    • /
    • 2014
  • Photovoltaic (PV) systems bosed on solar energy offer an environmentally friendly source of electricity. A key feature of such PV sysem is the efficiency of conversion at which the power converter stage can extract the energy from the PV arrays and deliver to the load. The Maximum power point tracking (MPPT) of the PV output for all sunshine conditions allows reduction of the cost installation and maximizes the power output from the PV panel. The proposed algorithm is to control the width of the pulse for battery charging based on the open voltage of the PV panel. As a lab results, the proposed system was implemented functions to adapt to the changes of the PV open voltage, and improved the charging efficiency.

  • PDF

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.