• 제목/요약/키워드: Solar Cell Model

검색결과 147건 처리시간 0.026초

Analysis of New Solar Cell Model for the Virtual Implemented Solar Cell System (가상구현 태양전지 시스템을 위한 태양전지의 새로운 모델링)

  • Jeong, Byung-Hwan;Kang, Byoung-Hee;Lee, Myung-Un;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.79-89
    • /
    • 2006
  • Particularly the photovoltaic systems are preferred because the output is extracted to the useful electric energy. However, the output characteristics of photovoltaic(PV) systems using solar cell or array depend on the weather conditions. The assistant equipment which emulates the solar cell characteristics that can be controlled arbitrarily by researcher is required to the researchers for reliable experimental data. To solve these problems, it is necessary to research a solar cell model of which output characteristics varied by setting the weather conditions such as insolation levels and temperatures. Therefore, this paper was presented that improved model which is based on interpolation model. To verified the improved model, it is confirmed using the simulation of MATLAB. Also, the experiment was performed by the characteristics of virtual implemented solar cell(VISC) system with the proposed solar cell model. It could be confirmed that there exists actual ewer within 5% between actual solar cell and VISC system.

Study on the tree-mimic array of solar cell modules (수목형상에 따른 태양전지 모듈의 배열 연구)

  • Kim, Ki-Hyun;Yun, Rin
    • Journal of the Korean Solar Energy Society
    • /
    • 제31권6호
    • /
    • pp.32-39
    • /
    • 2011
  • This study is about the installation of the solar cell modules. The solar cell modules are built by the tree-mimic structure, and the performance is compared with that of the flat-plate type solar cell module installation. The mathematical tree model, which was suggested by Fisher and Honda, is utilized to determine the location of the solar cell modules for the tree-mimic type. The experiment shows that the generated electric power of the flat-plate type is higher than that of the tree-mimic type by 30% for one month of July. This lower performance for the tree-mimic type comes from the shading effects among the solar cell modules. The theoretical calculation for the absorbed solar radiation on the two types of solar cell installation shows that the tree-mimic type is higher than the flat-plate type by 8.5%. The shading area for the tree-mimic model is calculated with time by using the 3D-CAD, which will be utilized for the optimization of the tree-mimic model in the future.

Analysis of improved solar cell modeling (개선된 태양전지 모델링 해석)

  • Kim Sun-Ja;Jeong Byung-Hwan;Park Jong-Chan;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.113-116
    • /
    • 2004
  • Output power of a photovoltaic system changes continuously as it strongly depends on the weather condition(isolation and temperature). Therefore, it is necessary the theoretical model realizes the electrical output characteristics of solar cell. Of several theoretical models for real solar cell, both parametric model and interpolation model are used widely. In this paper, we have propose a improved model of solar cell using its output characteristics that can be extended to calculate the rear solar cell characteristics at various temperatures and insolation. And more, the theoretical research of several models of solar cell using simulation analysis.

  • PDF

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권3호
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.

A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator (태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell (Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響))

  • Shin, Kee-Shik;Lee, Ki-Seon;Choi, Byung-Ho
    • Solar Energy
    • /
    • 제8권2호
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

A Novel Parameter Extraction Method for the Solar Cell Model (새로운 태양전지 모델의 파라미터 추출법)

  • Kim, Wook;Kim, Sang-Hyun;Lee, Jong-Hak;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.372-378
    • /
    • 2009
  • With the increase in capacity of photovoltaic generation systems, studies are being actively conducted to improve system efficiency. In order to develop the high performance photovoltaic power system it is required to understand the physical characteristics of the solar cell. However, solar cell models have a non-linear form with many parameters entangled and conventional methods suggested to extract the parameters of the solar cell model require some kind of assumptions, which accompanies the calculation errors, thereby lowering the accuracy of the model. Therefore, in this paper a novel method is proposed to calculate the ideality factor and reverse saturation current of the solar cell from the I-V curve measured and announced by solar cell manufacturers, derive the ideal I-V curve, and then extract the series and shunt resistances value from the difference between the ideal and measured I-V curve. Also, validity of the proposed method is demonstrated by calculating the correlation between I-V curve based on modeling parameters and I-V curve actually measured through least squares method.

Virtual-Implemented Solar Cell System with New Cell Model (새로운 태양전지 모델을 이용한 태양전지 가상구현 시스템)

  • Jeong, Byung-Hwan;Lee, Sang-Yong;Oh, Bang-Won;Jeon, Yoon-Suk;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1374-1376
    • /
    • 2003
  • The output of solar cell or array depends on the weather conditions such as cell temperature and insolation level. If the output of the photovoltaic system would be regularly generated under any weather conditions, it is so easy to develop the inverter, its related system, and also control algorithm. This can be performed by the VISC(virtual-implemented solar cell) system studied in this paper. And a few I-V curves are provided by the manufacturers, and so any I-V value between the given curves is unknown. The new model for solar cell is proposed which is based on the interpolation. Both simulation and experiment are executed to show the validity of the proposed VISC system.

  • PDF