• Title/Summary/Keyword: Solar Air Heater

Search Result 50, Processing Time 0.02 seconds

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

A Study on the Performance of Ak Heaters -Black Coating Materials, Coating Methods and Structure of Air Path- (평판식 태양열 공기가열기의 성능에 관한 연구 -도장재료, 도장방법 및 공기통로 구조를 중심으로-)

  • 박종길;연광석;차균도
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 1979
  • In order to obtain the basic data for designing optimum flat plate solar air heaters, which can be operated with relatively low temperature for drying farm products, 8 different treatment of solar air heaters were devised and tested for their heating performances and efficiencies. The results were analised and summarized as follows. 1. The primary factors, structure of air path (C), black coating materials (A) and bottom coating methods (B) showed very high significant effect of far above 1% level. With respect to the mutual multiplying effect of secondary factors, 1% level of significance was found with coating materials and methods (AB), and 5% level of significance was found with coating materials and air path structure (AC). 2. The heating performance of the air heaters with winding air path showed about twice those with straight air path. 3. The Korean black ink which is less expensive than dim oil paint showed 3-4% better heating efficiencies as the black coating material of flat plate solar air heaters. 4. The heating efficiencies of the solar air heaters whose bottoms were not black coated were 2-3% higher than those with black coated bottoms. 5. The highest heating efficiency of solar air heater among 8 different treatment was found in the plot of Korean black ink-bottom not coated-winding air path showing 29.0-34.5%

  • PDF

A Theoretical and Experimental Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론 및 실험적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.336-345
    • /
    • 1996
  • A theoretical and experimental study was conducted in order to design highly efficient solar air heaters using porous material. Radiative characteristics of glass windows and porous absorbing media were correlated through spectral transmittances measured by the UV-Visible and the FT-IR spectrometers. Using those characteristics the efficiencies of collectors were numerically calculated with the use of the two-flux radiation model. Based on the theoretical results, an experimental solar collector was designed and constructed. Experimental results under various conditions show that the daily efficiencies are over 60% in general and agree well with the theoretically calculated ones.

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Heat Transfer Performance of Plate Type Absorber with Surfactant

  • Yoon, Jung-In;M. M. A. Sarker;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.243-251
    • /
    • 2004
  • Absorption chiller/heater can utilize the unused energy of the daily life waste heat, the industry waste heat. the solar energy and the earth energy. These can contribute to energy savings. But the absorption chiller/heater has a demerit that the size of absorption chiller/heater is larger than that of the vapor compression type based on same capacity. In this study. the experimental apparatus of an absorber is manufactured as a plate. which is newly applied in an absorber. The experimental apparatus is composed of a plate type absorber. which can increase the heat exchange area per unit volume and thus facilitating to deeply investigate more detail features instead of that done by the existing type. i.e.. horizontal tube bundle type. The characteristics of heat transfer and refrigeration capacity are studied experimentally. The absorption enhancement by using surfactant is closely examined through the experiment and comparative figures are presented in quantitative and qualitative analysis.

Analysis of Heat Transfer of Thermal Storage Roof with the Air Circulation System (공기순환구조를 갖는 축열지붕의 열전달해석)

  • Shin, U.C.;Park, S.H.;Baek, N.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • The paper discusses the modelling of the thermal storage roof with the air circulation system. In this system, the fully glazed absorber plate is put on the top of the conventional pitch roof made of massive concrete and acts as a solar air heater. Solar radiation collected into absorber is stored in the roof structure by radiation and convection so that it reduces the nighttime heating load through the roof. Another part of the energy is also transmitted to internal air drawn into the channel and is then introduced Into the room. To analysis the system, the energy balance equations are developed and are solved using a finite difference method. The calculation results show a good agreement with the measured ones obtained from our experiments. From the results, it is seen that the thermal storage roof with the air circulation system reduces significantly the conductive heat loss compared with that for the conventional roof and has the instantaneous solar collection efficiency of about 30%.

  • PDF

A Study on the Thermal Performance of a Solar House by a Computer Simulation (태양열주택의 난방성능에 관한 연구)

  • Lee, Sang-Chun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.2
    • /
    • pp.64-72
    • /
    • 1978
  • The determination of solar collector area requires a thermal simulation to evaluate the performance of a solar house. This study comprises a simulation of system performance including a solar house, flat-plate collectors, a water type storage tank and an auxiliary heater. Developing the steady state performance equations of each equipment, and using the actual monthly average weather data for several recent years, this study evaluates the hourly performance of a solar house model. As a result, it is shown that the desirable collector area in Seoul is 1.4-1.6 times larger than the heating area in the case of non-selective surface, 0.8-1.0 times in the case of selective surface.

  • PDF

Study on the Collector Efficiency of an Air Heater in a Solar Air Conditioning System (태양열 이용 냉난방 공조시스템 중 공기식 집열기의 집열효율에 관한 연구)

  • Kim, B.C.;Shin, H.J.;Choi, K.H.;Kum, J.S.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The suggested year round solar air conditioning system has been developed for cooling and heating. In particular, this system focused on cooling and dehumidification and it could reduce a peak time owing to the use of air conditioners in summer. This study was performed to find out how much heating loads could be saved and furthermore whether this suggested system would be possible to do heating without a switch of system in real situations. Through model house experiments, the following conclusions were obtained. 1) The collector efficiency was 36% at maximum, but more improved structure of suggested collector could increase its efficiency. 2) The temperature of outlet air was about $30^{\circ}C$ and it could reduce heating loads. 3) Measured temperature and calculated one agreed well within ${\pm}1.5^{\circ}C$.

  • PDF

Development of f-chart for the Design of Solar Heating Systems (태양열난방장치 설계를 위한 f-chart 개발)

  • Song Dal-Sun;Yoo Seong-Yeon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.292-298
    • /
    • 1986
  • The new f-chart capable of estimating long-term thermal performance of solar space and water heating systems was developed. The system comprise a flat plate solar collector, heat exchanger, storage tank filled with water, auxiliary fuel fired heater, and a house structure. The information obtained from many simulations of solar heating systems has been used to develop this f-chart. Actual hourly meteorological data collected in Seoul, Daejeon, Kwangju and Daegu, Korea from 1979 to 1983 have been utilized in these simulations. The new f-equation is as follows: $$f=1.034Y_{-}0.0968X_{-}0.2235Y^2+0.0043X^2+0.0144Y^3$$. The system performance estimates obtained from the developed f-chart are in close agreement with the results of experiment.

  • PDF

Verification Experiment and Analysis for 6kW Solar Water Heating System (Part 4 : Comparing Economics and Raising Competitiveness) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석 (제4보 경제성비교 및 경쟁력강화))

  • Lee Bong Jin;Kang Chaedong;Lee Sang Ryoul;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.232-242
    • /
    • 2005
  • It has been recognized that solar water heating systems are economically inferior to conventional gas water-heaters and boilers using light oil as fuel in spite of having practical possibilities among other alternative energy facilities in Korea. The solar system, however, should be revaluated due to the sharp rise of oil prices recently. We have calculated the energy amount and cost through a series of research projects for the system by experiment and simulation, which lead to analyzing reliable life cycle costs. For the economic analysis, the gas water-heater and light oil boiler were taken as base cases while the solar systems implemented with these facilities were compared as alternatives. As a result, the solar system using the light oil as an auxiliary fuel surpassed the light oil boiler in economics. And a $50\%$ government subsidy for the initial cost is needed to maintain competitiveness with the gas hot-water heater. With this support, the simple payback period of the system can approach 12.8 years under $20\%$ additional curtailment of expenditure.