• Title/Summary/Keyword: Solar Activity

Search Result 353, Processing Time 0.028 seconds

자기폭풍예보모델을 이용한 우주환경예보

  • 안병호
    • Information and Communications Magazine
    • /
    • v.15 no.9
    • /
    • pp.97-106
    • /
    • 1998
  • It is crucial to predict the variabilities of the near-earth space environment associated with the solar activity, which cause enormous socio-economic impacts on mankind. The geomagnetic storm prediction scheme adopted in this study is designed to predict such variabilities in terms of the geomagnetic indices, AE and Dst, the cross-polar cap potential difference, the energy dissipation rate over the polar ionosphere and associated temperature increase in the thermosphere. The prediction code consists of two parts; prediction of the solar wind and interplanetary magnetic field based upon actual flare observations and estimation of various electrodynamic quantities mentioned above from the solar wind-magnetosphere coupling function 'epsilon' which is derivable through the predicted solar wind parameters. As a test run, the magnetic storm that occurred in early November, 1993, is simulated and the results are compared with the solar wind and the interplanetary magnetic field measured by the Japanese satellite, Geotail, and the geomagnetic indices obtained from ground magnetic observatories. Although numerous aspects of the code are to be further improved, the comparison between the simulated results and the actual measurements encourages us to use this prediction scheme as the first appoximation in forecasting the disturbances of the near-earth space environment associated with solar flares.

  • PDF

Drought over Seoul and Its Association with Solar Cycles

  • Park, Jong-Hyeok;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

Solar farside magnetograms from deep learning analysis of STEREO/EUVI data

  • Kim, Taeyoung;Park, Eunsu;Lee, Harim;Moon, Yong-Jae;Bae, Sung-Ho;Lim, Daye;Jang, Soojeong;Kim, Lokwon;Cho, Il-Hyun;Choi, Myungjin;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.3-51.3
    • /
    • 2019
  • Solar magnetograms are important for studying solar activity and predicting space weather disturbances1. Farside magnetograms can be constructed from local helioseismology without any farside data2-4, but their quality is lower than that of typical frontside magnetograms. Here we generate farside solar magnetograms from STEREO/Extreme UltraViolet Imager (EUVI) $304-{\AA}$ images using a deep learning model based on conditional generative adversarial networks (cGANs). We train the model using pairs of Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) $304-{\AA}$ images and SDO/Helioseismic and Magnetic Imager (HMI) magnetograms taken from 2011 to 2017 except for September and October each year. We evaluate the model by comparing pairs of SDO/HMI magnetograms and cGAN-generated magnetograms in September and October. Our method successfully generates frontside solar magnetograms from SDO/AIA $304-{\AA}$ images and these are similar to those of the SDO/HMI, with Hale-patterned active regions being well replicated. Thus we can monitor the temporal evolution of magnetic fields from the farside to the frontside of the Sun using SDO/HMI and farside magnetograms generated by our model when farside extreme-ultraviolet data are available. This study presents an application of image-to-image translation based on cGANs to scientific data.

  • PDF

STELLAR MAGNETIC ACTIVITY MEASURE BASED ON IUE MG II H+K EMISSION LINES OF MAIN-SEQUENCE G STARS

  • Kim, Dowoon;Choi, Hwajin;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • Stellar magnetic activity is important for formulating the evolution of the star. To represent the stellar magnetic activity, the S index is defined using the Ca II H+K flux measure from the Mount Wilson Observatory. Mg II lines are generated in a manner similar to the formation of Ca II lines, which are more sensitive to weak chromospheric activity. Mg II flux data are available from the International Ultraviolet Explorer (IUE). Thus, the main purpose of this study was to analyze the magnetic activity of stars. We used 343 high-resolution IUE spectra of 14 main-sequence G stars to obtain the Mg II continuum surface flux and Mg II line-core flux around 2,800 Å. We calculated S index using the IUE spectra and compared it with the conventional Mount Wilson S index. We found a color (B - V ) dependent association between the S index and the Mg II emission line-core flux. Furthermore, we attempted to obtain the magnetic activity cycles of these stars based on the new S index. Unfortunately, this was not successful because the IUE observation interval of approximately 17 years is too short to estimate the magnetic activity cycles of G-type stars, whose cycles may be longer than the 11 year mean activity cycle of the sun.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

Antioxidative Effects of Chungkukjang Preparation by Adding Solar Salt (천일염 함유 청국장의 항산화효과)

  • Lee, Jae-Joon;Kim, Ah-Ra;Chang, Hae-Choon;Lee, Myung-Yul
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.238-245
    • /
    • 2009
  • The antioxidant effects of chungkukjang, a popular fermented soybean paste in Korea, prepared with solar salt were investigated in vitro. DJI chungkukjang(DJIC) was prepared using 3%(w/w) solar salt or 3%(w/w) refined salt, and fermented by Bacillus subtilis DJI. All of DJIC with no salt, DJIC with 3%(w/w) solar salt, DJIC containing 3%(w/w) refined salt, and commercial chungkukjang were extracted with ethanol, hexane, and water. Antioxidative activities were measured by 1,1-diphenyl-2-picryl hydrazyl(DPPH) free-radical generation, nitrite scavenging activity, peroxide value in the presence of linoleic acid, and the Rancimat test, in comparison with the commercial antioxidant butylated hydroxytoluene(BHT). Ethanol chungkukjang extracts showed the highest antioxdative capacities, whereas DPPH free-radical generation and scavenging activities, and linoleic acid peroxide values of DJIC extracts prepared using solar salt, and salt-free DJIC, showed the greatest values. In addition, extracts of DJIC prepared using solar salt had the highest antioxidant indices. Antioxidative activities were higher in DJIC extracts than in those of commercial chungkukjang. However, the antioxidative capacities of DJIC prepared using solar salt and DJIC with no added salt were less than those of BHT. In conclusion, these results suggest that extracts of chungkukjang prepared using solar salt are useful nutritional antioxidants and that dietary supplementation with such materials would decrease oxidative stress.

A Long-term Accuracy Analysis of the GPS Klobuchar Ionosphere Model (GPS Klobuchar 전리층 모델의 장기간 정확도 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • Global Positioning System (GPS) is currently widely used for aviation applications. Single-frequency GPS receivers are highly affected by the ionospheric delay error, and the ionospheric delay should be corrected for accurate positioning. Single-frequency GPS receivers use the Klobuchar model, whose model parameters are transmitted from GPS satellites. In this paper, the long-term accuracy of the Klobuchar model from 2002 to 2014 is analyzed. The IGS global ionosphere map is considered as true ionospheric delay, and hourly, seasonal, and geographical error variations are analyzed. Histogram of the ionospheric delay error is also analyzed. The influence of solar and geomagnetic activity on the Klobuchar model error is analyzed, and the Klobuchar model error is highly correlated with solar activity. The results show that the Klobuchar model estimates 8 total electron content unit (TECU) over the true ionosphere delay in average. The Klobuchar model error is greater than 12 TECU within $20^{\circ}$ latitude, and the error is less than 6 TECU at high latitude.

EVOLUTION OF SUNSPOTS BASED ON VECTOR MAGNETOGRAM AND $H\beta$ FILTERGRAM OBSERVATION

  • LEE SANG WOO;YUN HONG SIK;MOON YONG JAE;WANG JIA LONG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • We have analyzed vector magnetograms and $H\beta$ filtergrams of two sunspot groups, one in a growing phase and the other in a decaying phase. In this study, the temporal evolution of their magnetic morphology has been investigated in association with solar activity. The morphological variations of the growing and decaying phase of these sunspots revealed in detail the coalescence of small spots into a large spot and the fragmentation of a large spot into many small spots, respectively. Numerous small flares were detected in the spot group during the decaying phase. This seems to be intimately associated with the shearing motions of many spots with different polarities created by fragmentation of a large sunspot. The magnetic flux and the average shear angle are found to be substantially reduced during the decaying phase, especially in the course of the flarings. This implies that the decaying phase of the sunspot is, to some degree, involved with magnetic field cancellation. The growing spot group has not shown any large activities, but numerous small spots have grown into a typical bipolar sunspot.

  • PDF