• Title/Summary/Keyword: Sol-gel preparation

Search Result 428, Processing Time 0.03 seconds

Preparation of Mullite Precursor Using Silicic Acid Extracted by Tetrahydrofuran from Sodium Silicate (규산나트륨으로부터 Tetrahydrofuran으로 추출된 규산을 이용한 Mullite 전구체 제조)

  • 노재성;홍성수;이범재;이병기;박은희;정홍호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.915-920
    • /
    • 1996
  • Fine mullite precursor was prepared by colloidal sol-gel processes. Aluminum isopropoxide $[Al(i-OC_3H_7)_3]$ as a starting material of $Al_2O_3$ and silicic acid extracted by THF from sodium silicate as a starting material of $SiO_2$ were used. Sodium silicate was first acidified by dilute sulfuric acid to form silicic acid. ; followed by extraction using THF, Mullite precursor was synthesized by sol-gel processes from aluminum isopropoxide and sillicic acid considering the degree of extraction of Si and the removal efficiency of Na. The impurity content of silicic acid extracted by THF was below 0.04% Synthetic mullite precursor consisted of $3Al_2O_3{\cdot}2SiO_2$ and showd spherical particles of $0.05{\mu}m$ diameter and below 0.462% of impurites. The mullite precursor was characterized by EDS, XRD, TG/DSC SEM, FT-IR spectroscopy ICP and TEM.

  • PDF

Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties (EPD 방법을 이용한 알루미나-실리카 복합 코팅막의 제조와 전기절연 특성)

  • Ji, Hye;Kim, Doo Hwan;Park, Hee Jeong;Lim, Hyung Mi;Lee, Seung-Ho;Kim, Dae Sung;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.177-183
    • /
    • 2014
  • Alumina-silica composite coating layers were prepared by electrophoretic deposition (EPD) of plate-shaped alumina particles dispersed in a sol-gel binder, which was prepared by hydrolysis and the condensation reaction of methyltrimethoxysilane in the presence of colloidal silica. The microstructure and the electrical and thermal properties of the coatings were compared according to the EPD process parameter: voltage, time and the content of the plate-shaped alumina particles. The electrical insulation property of the coatings was measured by a voltage test. The coatings were prepared by EPD of the sol-gel binder with 5-30 wt% plate alumina particles on parallel electrodes at a distance of 2 cm for 1-10 min under an applied voltage of 10-30 V. The coatings experienced increased breakdown voltage with increasing thickness. However, the higher the thickness was, the smaller the breakdown voltage strength was. A breakdown voltage as high as 4.6 kV was observed with a $400{\mu}m$ thickness, and a breakdown voltage strength as high as 27 kV/mm was achieved for the sample under a $100{\mu}m$ thickness.

Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method (Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구)

  • Lee, NaRi;Yu, Ri;Kim, Tae Kwan;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.477-482
    • /
    • 2017
  • Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

Preparation and Characterization of Hard Coating Materials Based on Silane Modified Boehmite Hybrid Materials (Bohemite 나노졸을 이용한 내구성 코팅재료의 제조와 특성에 관한 연구)

  • Jeon, Seong Je;Kim, Woong;Lee, Jai Joon;Koo, Sang Man
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2006
  • UV-thermal dually curable coating materials were prepared by the sol-gel method. Nano-sized colloidal boehmite was treated with various organo silane coupling agents. These materials could be well dispersed in various alcohols and relatively polar organic solvents such as tetrahydrofuran and acetonitrile. The coating films were prepared by a spin coating method on various substrates, which were characterized by FT-IR, Si/Al CP MAS NMR spectra, UV-Vis spectrophotometer, FE-SEM, Taber abraser, haze meter, and pencil hardness tester. The effects of molar ratio and types of silane coupling agents, curing method and ion-shower treatment were investigated. Dually curable coating method offered an optimally good quality film in both hardness and transmittance. The transparency and the hardness of the prepared films were increased with amounts of 3-(trimethoxysilyl)propylmethacrylate, and (3-glycidyloxypropyl)trimethoxysilane, respectively. The adhesion between coated layer and substrate could be enhanced by ion-shower treatment.

Preparation of the mixed oxide photocatalyst and its quantum yield. (Mixed oxide 광촉매의 제조 및 광분해 효율 평가)

  • Kim, Dong H.;Lee, Tai K.;Kim, Kyung N.;Chungmoo Auh;Kim, Kwang B.;Lee, Seung W.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.45-52
    • /
    • 1995
  • The photocatalytic activity of TiO$_2$ was investigated as a function of added amount of Nb$_2$O$_{5}$, heat treatment temperature and the decomposition rate of 1 mM dichloroacetic acid(DCA). Mixed oxides of TiO$_2$ and Nb$_2$O$_{5}$ was prepared by the sol-gel process. The addition of Nb$_2$O$_{5}$ into TiO$_2$ has deleterious effect on the decomposition rate of DCA, which was decreased as the amount of Nb$_2$O$_{5}$ was increased. The excess electrons due to the doping of Nb$_2$O$_{5}$ into TiO$_2$ can promote the reduction process instead of oxidation or recombination rate with electron holes. The most efficient photocatalyst was the one heat treated at 40$0^{\circ}C$ for an hour as far as the heat treatment temperature is concerned. The lower the pH of the solution, the higher the quantum yield.tum yield.

  • PDF

Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane (Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용)

  • Park, Eun-Seok;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • This study was aimed at the development of catalysts for the direct methanol synthesis by partial oxidation of methane. Mo-Bi-V-Al mixed oxide catalysts were prepared and characterized and used in the direct methanol synthesis reaction. The catalysts prepared by the sol-gel method had much larger surface areas than those prepared by the co-precipitation method. The larger the surface area was, the less the methanol selectivity was. The catalysts having larger surface area facilitate the complete oxidation of methane, decreasing the selectivity of methanol. The catalysts prepared by the sol-gel method showed higher methanol selectivity of 13% at $20^{\circ}C$ lower temperature than those prepared by the co-precipitation method. Through XRD analysis, it was revealed that the structures of the catalysts prepared by the two methods were different. In the reaction, methanol selectivity increased and carbon dioxide selectivity decreased with pressure due to the suppression of complete oxidation reaction at a high pressure.

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method (다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅)

  • 한요섭;박재구
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.548-554
    • /
    • 2004
  • A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

Preparation of SrGd2(MoO4)4:Er3+/Yb3+ Phosphors by the Microwave-Modified Sol-Gel Method and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.605-611
    • /
    • 2014
  • $SrGd_{2-x}(MoO_4)_4:Er^{3+}/Yb^3$ phosphors with doping concentrations of $Er^{3+}$+ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) were successfully synthesized by the cyclic microwave-modified sol-gel method, and their upconversion mechanism and spectroscopic properties have been investigated in detail. Well-crystallized particles showed a fine and homogeneous morphology with grain sizes of $2-5{\mu}m$. Under excitation at 980 nm, $SrGd_{1.7}(MoO_4)_4:Er_{0.1}Yb_{0.2}$ and $SrGd_{1.5}(MoO_4)_4:Er_{0.05}Yb_{0.45}$ particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, and a very weak 655-nm emission band in the red region. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 1023, 1092, and $1325cm^{-1}$ and at lower frequencies of 223, 2932, 365, 428, 538, and $594cm^{-1}$ induced by the incorporation of the $Er^{3+}$+ and $Yb^{3+}$+ elements into the $Gd^{3+}$ site in the crystal lattice, which resulted in the unit cell shrinkage accompanying a new phase formation of the $[MoO_4]^{2-}$ groups.

A Study on the Agglomeration of BaTiO3 Nanoparticles with Differential Synthesis Route (나노입자 합성방법에 따른 타이타늄산바륨 나노입자뭉침 현상 연구)

  • Han, W.-J.;Yoo, B.-Y.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • $BaTiO_3$ is typical ferromagnetic materials with dielectric constant of above 200. $BaTiO_3$ nanoparticles applications are available for multiple purposes such as nanocapacitors, ferroelectric random access memories, and so on. Applications are is diverse from the dispersion of nanoparticles depending on the route of synthesis. In this study, $BaTiO_3$ nanoparticles were synthesized by two different methods such as oxalate method and sol-gel process (ambient condition sol method). Particle size and dispersion condition were studied according to the preparation method and capping agent. Poly vinyl pyrrolidone (PVP) was used as a capping agent in oxalate method and tetrabutylammonium hydroxide (TBAH) used as a capping agent in sol-gel process each. Cubic crystal structure of $BaTiO_3$ phase could be confirmed by X-ray diffraction analysis. Fourier transform-infrared spectroscopy was employed for the confirmation of the capping agent and $BaTiO_3$ nanoparticles. The particle size and distribution analysis was also performed by particles size analyzer and scanning electron microscope.