• 제목/요약/키워드: Soilborne

검색결과 60건 처리시간 0.028초

Improvement of Biological Control against Bacterial Wilt by the Combination of Biocontrol Agents with Different Mechanisms of Action

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Journal of Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.136-143
    • /
    • 2007
  • Despite the increased interests in biological control of soilborne diesease for environmental protection, biological control of bacterial wilt caused by Ralstonia solanacearum have not provided consistent or satisfying results. To enhance the control efficacy and reducing the inconsistency and variability, combinations of specific strains of microorganisms, each having a specific mechanism of control, were applied in this study. More than 30 microorganisms able to reduce the activity of pathogen by specific mechanism of action were identified and tested for their disease suppressive effects. After in vitro compatibility examinations, 21 individual strains and 15 combinations were tested in the greenhouse. Results indicated three-way combinations of different mode of control, TS3-7+A253-16+SKU78 and TS1-5+A100-1+SKU78, enhanced disease suppression by 70%, as compared to 30-50% reduction for their individual treatments. This work suggests that combining multiple traits antagonizing the pathogen improve efficacy of the biocontrol agents against Ralstonia solanacearum.

Colonization of Retama raetam Seeds by Fungi and Their Significance in Seed Germination

  • OUF, S.A.
    • 한국균학회지
    • /
    • 제21권4호
    • /
    • pp.316-322
    • /
    • 1993
  • Examination by scanning electron microscopy and potato-dextrose agar medium showed that the dry seeds of R. raetam were externally free of fungi. When planted in sandy loam soil, the seeds become colonized with eleven soilborne fungal species. The fungi were isolated on cellulose agar, pectin agar and lignin agar media. Aspergillus flavus, A. niger, Penicillium capsulatum and Fusarium oxysporum had broad occurrence and recovered on the three media. The production of hydrolytic enzymes by the isolated fungi depends on the substrate and species. P. capsulatum, P. spinulosum and A. niger had wide enzymatic amplitude and they were able to produce cellulolytic, pectolytic and lignolytic activities on corresponding substrates as well as on seed coat containing media. The lignolytic activities of the isolated species except Chaetomium bostrychods and Trichoderma viride were enhanced on applying the seed coat materials as C-source rather than using lignin. Soaking R. raetam seeds in culture filtrates of the most fungi grown on seed coat supplemented media induced pronounced and distinct stimulating effect on seed germination. The most effective filtrates were those of P. capsulatum, P. spinulosum and Sporotrichum pulverulentum.

  • PDF

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

골프장의 난지형 잔디에 발생하는 Large patch의 발병 특성 (Characteristics of large patch occurrence at warm-season turfgrass in golf course)

  • 우현녕;김기림;김혜진;정덕영
    • 농업과학연구
    • /
    • 제38권2호
    • /
    • pp.243-248
    • /
    • 2011
  • This investigation was conducted to develop an integrated disease management system against large patch disease occurred in a golf course. Large patch, brown patch, and Rhizoctonia blight sometimes are used interchangeably by turfgrass managers and researchers, Large patch disease of zoysiagrass is caused by a soilborne fungus called Rhizoctonia solani. Although this fungus is very similar to the one that causes brown patch disease of cool-season turfgrasses in mid-summer. Large patch development is favored by high thatch and soil moisture. Avoid overwatering the turfgrass, especially in the fall or early spring. Poorly-drained areas are very susceptible to injury from large patch and should be reconstructed (draining tiles, etc) to avoid soil saturation. However, control of yellow patch with fungicides is normally not recommended because the disease has only cosmetic effects and symptoms are usually very short-lived. Therefore, we reviewed the symptom of large patch to look for control method by soil management method.

Screening rhizobacteria for biological control of root rot and Phytophthora blight on glnseng.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.103.2-104
    • /
    • 2003
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. During 3 or 5 years cultivation of ginseng, yield losses can reach as high as 30-60% due to numerous diseases in Korea. Among 106 Bacillus strains isolated from various plant internal roots, we selected three promising biocontrol agents by screening against root rot caused by Cylindrocarpon destructan in a greenhouse. Preinoculation of selected isolates to seed or one-year-old root resulted in stimulation of shoot and/or root growth of seedlings, and control of root rot in infested soils with Cylindronrpon destructans (P=0.05). Furthermore, drenching of selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight when the seedlings were challenged with zoospores of Phytophthora cactorum (P=0.05). However, isolates B1141 and B1142 did not show any antifungal activity against various soilborne pathogens while B1146 did in vitro. Our results provide an insight that rhizobacteria can induce resistance against various plant diseases on ginseng even if any resistant breeds have been unknown on ginseng yet.

  • PDF

Mannitol Amendment as a Carbon Source in a Bean-based Formulation Enhances Biocontrol Efficacy of a 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134 Against Tomato Fusarium Wilt

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • 제27권4호
    • /
    • pp.390-395
    • /
    • 2011
  • Fusarium wilt caused by Fusarium oxysporum has become a serious problem world-wide and relies heavily on chemical fungicides. We selected Pseudomonas sp. NJ134 to develop an effective biocontrol strategy. This strain shows strong antagonistic activity against F. oxysporum. Biochemical analyses of ethyl-acetate extracts of NJ134 culture filtrates showed that 2,4-diacetylphloroglucinol (DAPG) was the major compound inhibiting in vitro growth of F. oxysporum. DAPG production was greatly enhanced in the NJ134 strain by adding mannitol to the growth media, and in vitro antagonistic activity against F. oxysporum increased. Bioformulations developed from growth of NJ134 in sterile bean media with mannitol as the carbon source under plastic bags resulted in effective biocontrol efficacy against Fusarium wilt. The efficacy of the bioformulated product depended on the carbon source and dose. Mannitol amendment in the bean-based formulation showed strong effective biocontrol against tomato Fusarium wilt through increased DAPG levels and a higher cell density compared to that in a glucose-amended formulation. These results suggest that this bioformulated product could be a new effective biocontrol system to control Fusarium wilt in the field.

Antifungal Activity of Five Plant Essential Oils as Fumigant Against Postharvest and Soilborne Plant Pathogenic Fungi

  • Lee, Sun-Og;Choi, Gyung-Ja;Jang, Kyoung-Soo;Lim, He-Kyoung;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.97-102
    • /
    • 2007
  • A total of 39 essential oils were tested for antifungal activities as volatile compounds against five phytopathogenic fungi at a dose of 1 ${\mu}l$ per plate. Five essential oils showed inhibitory activities against mycelial growth of at least one phytopathogenic fungus. Origanum vulgare essential oil inhibited mycelial growth of all of the five fungi tested. Both Cuminum cyminum and Eucalyptus citriodora oils displayed in vitro antifungal activities against four phytopathogenic fungi except for Colletotrichum gloeosporioides. The essential oil of Thymus vulgaris suppressed the mycelial growth of C. gloeosporioides, Fusarium oxysporum and Rhizoctonia solani and that of Cymbopogon citratus was active to only F. oxysporum. The chemical compositions of the five active essential oils were determined by gas chromatography-mass spectrometry. This study suggests that both E. citriodora and C. cyminum oils have a potential as antifungal preservatives for the control of storage diseases of various crops.

Incidence and Intensity of Root Disease Complex due to Nematode and Soilborne Fungal Pathogens in Mulberry (Morus alba L.)

  • Naik, Vorkady Nishitha;Sharma, Dinesh Dutta;Govindaiah, Govindaiah
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제16권2호
    • /
    • pp.49-56
    • /
    • 2008
  • A preliminary survey on the incidence and intensity of root disease complex (association of Meloidogyne incognita and root rot pathogens) was carried out in the sericultural areas of Karnataka. A total of 280 mulberry gardens were surveyed in 14 districts of Karnataka belonging to different types of soil (red sandy, red loamy and black cotton), farming systems (irrigated and rainfed), varieties (V-1, K-2, Local and S-13) and age of the plants (0-5, 5-10 and 10-15 years). It was observed that the association of M. incognita with Botryodiplodia theobromae and Fusarium solani causes the root disease complex in mulberry. Of the 280 gardens visited, 94 were infested with the disease complex and incidence was recorded as 33.6%. The higher intensity of root disease complex was observed when the root system had more than 100 galls/plant with infection of mixed population of B. theobromae and F. solani in sandy soil under irrigated farming. The 5-10 years old mulberry plantation with V-I variety was found to be most susceptible to root disease complex. Districts like Mysore, Kolar, Mandya, Tumkur, Chitradurga and Bangalore were observed as sensitive areas. Further, the wounds caused by M. incognita in mulberry roots favour the easy entry of root rot pathogens, which increased the severity of the disease very fast.

항진균성 길항세균 Bacillus subtilis YBL-7의 종자피막용 포자체의 생산과 발아조건 (Bacterial Sporulation and germination of Biocontrol agent Bacilus subtilis YBL-7)

  • 장종원;김상달
    • 한국미생물·생명공학회지
    • /
    • 제23권2호
    • /
    • pp.236-242
    • /
    • 1995
  • Biological control of soilborne plant pathogens by the addition of antagonistic microorganisms to the soil may offer a practical supplement or alternative to existing disease management strategies that depend heavily on chemical pesticides. Soil amendment with antagonistic microbes was non-effective because of high cost, low efficacy, and inconvenient usage on the treatment course. Therefore, seed coating formulation for the application of biological seed treatments has been being to apply successful disease suppression for many important crops. The objectives of this study were to investigate the optimal condition for the spore production of biocontrol agent Bacillus subtilis YBL-7 and the liquid coating formulation that contained a suspension of a proper aqueous binder, as well as a ground fine solid particulate material. The maximum yield has been obtained from 60 hrs-old culture at 30$\circ$C in spore forming (SF) medium containing 0.8% nutrient broth, 0.05% yeast extract, 10$^{-1}$ M MgCl$^{2}$, 10$^{-4}$ M MnCl$^{2}$, 10$^{-5}$ M dipicolinic acid, and pH 6.5. The optimal condition of dried spore preparation was achieved when cells of B. subtilis YBL-7 was heat-dried with 50$\circ$C for 2 hrs.

  • PDF

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.