• Title/Summary/Keyword: Soil-water characteristics

Search Result 2,006, Processing Time 0.028 seconds

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.5-20
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics play the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore pressure coupled finite element modeling of NATM tunneling.

Photolysis of the insecticide imidacloprid in water and water-paddy soil systems (살충제 imidacloprid의 물 및 물-토양계 중 광분해)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Kim, Chan-Sub;Choi, Byeong-Ryeol;Hong, Soo-Myung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • To elucidate the photolysis characteristics of the insecticide imidacloprid in the environment, $[^{14}C]$imidacloprid was treated into water and paddy soil-water system. In water system, the amount of $^{14}C$-radioactivity distributed in aqueous phase was rapidly increased up to 80% of total $^{14}C$ in water during 7 days of exposure to sunlight. Also, the amounts of imidacloprid in water at day 0 and 3 days after treatment were 1.2461 and 0.8594 mg/kg, respectively, not being detected 7 days after treatment, indicating rapid degradation of imidacloprid in water by sunlight. One photodegradation product, imidacloprid urea, in which the $N-NO_2$ moiety of imidacloprid was replaced by oxygen, was detected from water in water and water-paddy systems. The amount of the metabolite detected from water in water system was 0.0112 mg/kg 1 day after treatment and reached the top concentration of 0.0391 mg/kg 7 days after treatment. In case of water-paddy system, its amount was 0.0117 mg/kg 1 day after treatment and reached the highest concentration of 0.0259 mg/kg 3 days after treatment. Rapid transformation of imidacloprid into polar compounds continued until 7 days after treatment, considering that 80% of $^{14}C$ in water distributed in aqueous phase 7 days after treatment, amount of imidacloprid was 1.6538 mg/kg at day 0 and 0.8785 mg/kg 1 day after treatment, not being detected after 15 days, indicating rapid degradation of imidacloprid in water-paddy soil system by sunlight. The direct degradation of imidacloprid to imidacloprid urea would be a major photodegradation pathway in water and water-paddy soil systems.

First-and Second-Order Statistics of Washita'92 Soil Moisture Data (Washita '92 토양수분 자료의 1차원 및 2차원 통계특성)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • In this paper the first- and second order statistics of soil moisture are derived using the Washita '92 data. Also the possible correlations among the soil texture, the brightness temperature, the NDVI and the soil moisture are investigated based in the linear regression study. Only the correlation between the soil moisture and the brightness temperature shows significant values. The soil moisture decay coefficients in time were estimated for each soil type and cross-checked by calculating the last rainfall time before the observation to be about 20days in all different soil types. The second-order statistics of soil moisture based on the correlogram and the spectrum was analyzed to derive the data characteristics and compared with those of the NDVI and the soil texture. This analysis shows that the soil moisture within the highly correlated soil texture field is affected much by the relatively less correlated vegetation field in the Washita area, where the effect of topography is known to be small. The soil moisture media was derived and its parameters were estimated successfully using the first - and sedcond -order statistics.

  • PDF

Ecological Characteristics of Sphagnum fens in Mt. Odae : I. Sowhangbyungsan-neup (오대산 물이끼 이탄습지의 생태특성: I. 소황병산늪)

  • Kim, Jae-Geun
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.15-27
    • /
    • 2009
  • To reveal conservation value of Sowhangbyungsan-neup among wetlands in Mt. Odae designated as a Ramsar convention site in 2008, ecological characteristics were investigated. The maximum depth of sediment was 86cm and average at central part was 56cm. Average pH of water was 5.8 and this indicates that this wetland has the characteristics between bog and fen. Average electron conductivity was $11{\mu}S$/cm, which is the lowest among Korean wetlands. Nutrient status was oligotrophic based on contents of cation, nitrate, ammonia, soluble reactive phosphorus in water. Out-flow of water was related with the 3 day cumulative precipitation. Soil texture was loam and nutrient level was very low. Vascular plants of 45 family, 95 genus, 121 species, 2 subspecies, 16 variety, 4 forma, total 121 taxa were recorded. Main plant communities on Sphagnum base were Osmunda cinnamomea community, Carex dispalata community and Carex curta community. The results indicated that this wetland has very different ecological characteristics than others in Korea and deserves conservation value well. Also, this study revealed that there is no evident threatening factor and this wetland will have characteristics of fen continuously in near future.

  • PDF

Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery (장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가)

  • Moon, So-Young;Oh, Min-Ah;Jung, Jun-Kyo;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Unsaturated Shear Strength Characteristics of Compacted Natural Kaolin (다짐된 고령토의 불포화 전단강도특성)

  • Tae, Doo-Hyung;Park, Seong-Wan;Kwon, Hong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.649-655
    • /
    • 2010
  • Unsaturated compressive tests are performed to evaluate the effect of matric suction on the strength and the deformation characteristics for statically compacted natural kaolin in Korea. Under different conditions of the initial degree of saturation in kaolin, the relationship between suction and the degree of saturation at failure can be expressed by unique soil-water characteristic curve. These results demonstrate that the newly established constant water content type unsaturated shear strength test equipment can be used for estimating the relationship between suction and the compressive strength.

  • PDF

A Study on the Fundamental Characteristics of a Copper Slag Mixed with Granite Soil (동슬래그 혼합토의 기본 성질에 관한 연구)

  • 김영진;배정호;홍승서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.447-454
    • /
    • 2000
  • This paper presents fundamental characteristics of a copper slag when used geotechnical materials. For this study, it was conducted laboratory tests such as compaction, large direct shear, hydraulic conductivity, leaching, TDR, frost heave test and so on. The results of laboratory tests shown gradually increase in draining capacity and shearing resistance more slag mixing. The unfrozen water in temperature changes and frost heave amounts in condition of -17 $^{\circ}C$ appeared to decrease. Also, toxicity tests based on the domestic solid waste regulations were satisfied with nonhazardous. By this research results, a copper slag mixed with granite soil may been used as granular base and embankment materials, fill etc.

  • PDF

Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland

  • Jiyeol Im;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • Urbanization has been causing such new pollutants as micro-plastic, thus the environmental impact of new pollutants on ecosystem is rapidly increasing. When it comes to micro-plastic, a representative artificial trace pollutant, its risk has been increased at a much faster rate, however the depth study associated with stormwater sediment and wetland was relatively rare. In this research, soil samples from storm water sediment were analyzed for distribution characteristics of micro-plastics in the J wetland (registered as Ramsar wetland, May 2021 and a representative environmental site in South Korea). Analyzed soil samples found approximately 201 ± 93 particle/kg (based on unit weight, Total micro plastic particles / Total Sample weight) micro-plastics in the samples. When considering the total quantitative numbers in stormwater sediment in the entire area of the J wetland, over 15,000 micro-plastics were estimated to be contaminating such area. In addition, in terms of qualitative numbers, micro-plastics were contaminating the J wetland with 94.7 % ratio of styrofoam type (43.9%) and polyethylene type (50.8%). These research results can be used as base data sets for controlling micro-plastics in the J wetland.

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.