• Title/Summary/Keyword: Soil-liquid phase

Search Result 133, Processing Time 0.025 seconds

이액상계 생물반응기를 이용한 PAH의 분해

  • Lee Jae-Yeong;Kim Yong-Gi;Yang Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.159-162
    • /
    • 2005
  • In this study, a two-liquid-phase (TLP) bioreactor was conducted to enhance the biodegradation efficiency and rate of PAH. Phenanthrene was degraded efficiently irrespective of the type and the amount of water-immiscible liquid (WIL). The degradation efficiency of anthracene was much higher in paraffine oil than in silicone oil because the mass transfer of anthracene was different in the two WILs. Pyrene was only transferred from soil to WIL during 5 days. It seemed that the degradation of PAH in the TLP bioreactor was mainly dependent on the mass transfer of PAH.

  • PDF

Studies on the Detergency of Oily Soils (Part III) -Detergency of Liquid Oily Soils by the Formation of Liquid Crystal- (유성오염의 세척성에 관한 연구(제3보) -액수형성에 의한 액체유성오염의 세척성-)

  • 김영희;정두진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.425-425
    • /
    • 1995
  • The interaction and detergency between liquid oily soil and surfactant solution were studied by the mechanism of formation of liquid crestal(LC). Samples used were triolein as a triglyceride, oleic acid as a free fatty acid and sodium dodgily sulfate (SDS) as a surfactant. The results were as follows: In the phase diagram of SDS/oil/Water system, the area of liquid crystalline phase region were in the order of SDS/trillion/water< SDS/oleic acid/water< SDS/mixture of trillion and oleic acid/water. In the system of oleic acid alone or mixture of trillion and oleic acid contacted with SDS solution, the LC phase was formed right after or after some time with SDS concentration. But in a case of trillion alone, the LC phase was not formed although the concentration of the SDS solution was relatively high. The detergency of model oily soils were seldom changed with temperature, and the detergency of oleic acid was very high compared to that of the trillion. The detergency of mixed soil was improved with the increase of the ratio of oleic acid in the mixture.

Studies on the Detergency of Oily Soils (Part III) -Detergency of Liquid Oily Soils by the Formation of Liquid Crystal- (유성오염의 세척성에 관한 연구(제3보) -액수형성에 의한 액체유성오염의 세척성-)

  • 김영희;정두진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.426-433
    • /
    • 1995
  • The interaction and detergency between liquid oily soil and surfactant solution were studied by the mechanism of formation of liquid crestal(LC). Samples used were triolein as a triglyceride, oleic acid as a free fatty acid and sodium dodgily sulfate (SDS) as a surfactant. The results were as follows: In the phase diagram of SDS/oil/Water system, the area of liquid crystalline phase region were in the order of SDS/trillion/water< SDS/oleic acid/water< SDS/mixture of trillion and oleic acid/water. In the system of oleic acid alone or mixture of trillion and oleic acid contacted with SDS solution, the LC phase was formed right after or after some time with SDS concentration. But in a case of trillion alone, the LC phase was not formed although the concentration of the SDS solution was relatively high. The detergency of model oily soils were seldom changed with temperature, and the detergency of oleic acid was very high compared to that of the trillion. The detergency of mixed soil was improved with the increase of the ratio of oleic acid in the mixture.

  • PDF

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

이액상계를 이용한 토양슬러리 반응기에서의 PAH 거동 특성

  • 이재영;백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.144-147
    • /
    • 2003
  • In this study, the mass transfer behaviors of phenanthrene, anthracene, and pyrene in soil slurry reactor (SSR) using two-liquid phase (TLP) system were investigated. The mass transfer ratio and rate of PAH in the TLP system using light paraffine oil, which has the highest solubility of PAH, were influenced by the amount of light paraffine oil and mixing speed. When the amount of light paraffine oil decreased from 15 % to 2.5 % (v/v), the mass transfer ratio of anthracene decreased significantly compared with that of phenanthrene and pyrene. As mixing speed increased, the initial mass transfer rate of PAH within 1 day was enhanced. However, each final mass transfer ratio of three PAHs after 5 day was similar irrespective of mixing speed.

  • PDF

Growth Performance of Sedum reflexum and Physical Properties of Extensive Green Roof Growing Media (경량형 옥상녹화 식재기반의 물리성과 레플렉숨 생육특성)

  • Li, Hong;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.6
    • /
    • pp.50-59
    • /
    • 2014
  • This experiment was performed in order to study the relationship between physical properties of soil and the growth characteristics of Sedum reflexum. A correlation analysis and multiple regression analysis were performed using SPSS Ver 19.0 for Windows. The multiple regression analysis results of soil physical properties and growth characteristics were as follows. The regression equation: The length=$.993-14.070^*$(soil bulk density)+$.233^*$(solid phase)+$.038^*$(liquid phase)+$.068^*$(permeability). The significance of soil bulk density and solid phase was great. The width=$2.931-33.925^*$(soil bulk density)+$.566^*$(solid phase)+$.206^*$(liquid phase)+$.027^*$(permeability). The significance of soil bulk density and solid phase was great. The wet weight and dry weight of the upper and lower and soil physical properties did not have a direct relationship.

Optimization of Explosive Compounds (TNT and RDX) Biodegradation by Indigenous Microorganisms Activated by External Carbon Source (외부탄소원으로 활성화된 토착미생물에 의한 화약물질(TNT and RDX) 분해 최적화)

  • Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.56-65
    • /
    • 2014
  • Contamination of explosive compounds in the soils of military shooting range may pose risks to human and ecosystems. As shooting ranges are located at remote places, active remediation processes with hardwares and equipments are less practical to implement than natural solutions such as bioremediaton. In this study, a series of experiments was conducted to select a suitable carbon source and to optimize dosing rate for the enhanced bioremediation of explosive compounds in surface soils and sediments of shooting ranges with indigenous microorganisms activated by external carbon source. Treatability study using slurry phase reactors showed that the presence of indigenous microbial community capable of explosive compounds degradation in the shooting range soils, and starch was a more effective carbon source than glucose and acetic acid in the removal of TNT. However, at higher starch/soil ratio, i.e., 2.0, the acute toxicity of the liquid phase increased possibly due to transformation products of TNT. RDX degradation by indigenous microorganisms was also stimulated by the addition of starch but the acute toxicity of the liquid phase decreased with the increase of starch/soil ratio. Taken together, the optimum range of starch/soil ratio for the degradation of explosive compounds without significant increase in acute toxicity was found to be 0.2 of starch/soil.

Determination of Monocrotophos Residues by HPLC

  • Lee, Young-Deuk;Kwon, Chan-Hyeok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • An analytical method was developed to determine monocrotophos residues in apple, citrus, and soil using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. Monocrotophos was extracted with acetone from apple, citrus and moist soil samples. The extract was concentrated, added with saline water, and subjected to n-hexane washing to remove nonpolar co-extractives. Dichloromethane partition was then followed to recover monocrotophos from the aqueous phase. Silica gel column chromatography was employed to further purify the extract prior to HPLC determination. Reverse-phase HPLC using an oct-adecylsilyl column was successfully applied to separate and quantitate the monocrotophos residue in sample extracts at the wavelength of 230 nm. Overall recoveries of monocrotophos from fortified samples averaged $95.3{\pm}2.1%$ (n=6), $970{\pm}0.7%$ (n=6), and $92.8{\pm}4.3%$ (n=12) for apple, citrus, and soil, respectively. The proposed method was quite reproducible and sensitive enough to replace the troublesome gas-liquid chromatographic analysis for monocrotophos residues.

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Influence of LNAPL and Soil Water on Migration of Gaseous Ozone in Unsaturated Soils (불포화 토양내에서 가스상 오존 이동특성에 대한 LNAPL과 토양수분의 영향)

  • Jung, Hae-Ryong;Choi, Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.63-67
    • /
    • 2005
  • Laboratory scale experiments were carried out to delineate the effects of liquid phases, such as soil water and light nonaqeous phase liquid (LNAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevents direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity and decreased air-water interface area. Diesel fuel as LNAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. Ozone breakthrough time was retarded with increased diesel concentration, however, because of high reactivity of diesel fuel with ozone. In unsaturated soil containing two liquids of soil water and LNAPL, the transport of ozone was mainly influenced by nonwetting fluid, diesel fuel in this study.