• Title/Summary/Keyword: Soil-bin

Search Result 266, Processing Time 0.025 seconds

Experimental Technique for Trafficability on Soft Benthic Terrain (I) : Soil bin (해저 연약지반 주행성능 실험기법 연구 (I) : 주행실험토조)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.224-228
    • /
    • 2002
  • To study the trafficability on soft and cohesive benthic terrain, a soil bin is designed and constructed. The information of shear strength of pacific seafloor and the results of dimensional analysis of vehicle-train system are used as basic datum for concept design of soil bin. Cohesive benthic terrain is modeled by means of bentonite-water mixture. The shear strength of the mixture is measured by motorized shear meter. Several facilities are constructed for mixing and evening modeled soil, transporting vehicle model. The shear strength in soil bin is investigated for depth, age and velocity. The result of this study is used as basic information to the experiment, study for development of crawler on benthic terrain.

  • PDF

Construction of the Soil Bin System and Associated Micro computer-Based Data Acquisition System for the Evaluation of Wheel Performance (농업차륜(農業車輪)의 성능평가(性能評價)를 위한 인공토조(人工土槽)시스템의 제작(製作) 및 자료수집(資料蒐集) 시스템의 구성(構成))

  • Lee, K.S.;Chung, C.J.;Lee, Y.K.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.28-37
    • /
    • 1988
  • This study was conducted to construct the soil bin system and associated microcomputer-based data acquisition system which is to be used for the effective evaluation of wheel performance. The soil bin system consists of four main parts; soil bin, carriage drive system, test carriage and soil processing carriage. The test carriage was constructed to measure the five performance parameters of testing wheels; pulling forte, motion resistance, sinkage and rotational speed of test wheel, and speed of test carriage. The test wheel is powered by a hydraulic system up to 8 ps. Soil processing carriage was designed to provide uniform test soil condition across the toil bin, and reproduction of soil conditions found satisfiable. The data acquisition system consists of APPLE II PLUS microcomputer, strain amplifier, I/O interface, A/D converter, digital counter and various transducers. It takes about 0.86 seconds to measure a set of performance parameters and store on the floppy disk simultaneously. Series of experiment showed that this system can be used effectively for evaluating the wheel performance associated with soil.

  • PDF

Some Observations on SOIL SOIL-Failure By Linear Blade Using " Stilt" System

  • Mandang, Tinke;Nishimura, Isao
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1073-1087
    • /
    • 1993
  • Many investigations have been carried out concerning tillage tool performance, including energy requirement . Since the performance of tillage could also be evaluated through the change of soil , then it is necessary to investigate the soil cutting process and the pattern of soil failure. This study was conducted using indoor soil bin, STILT (Soil Tillage Tool Interaction) system. The result shows that the soil bin experiments could provide the clear understandings about phenomena of soil failure. The movement of sil , the successive failures was clearly visualized. The relations between the horizontal and vertical forces to the linear motion blade, the shear force on the shear plane which devides soil layer into several segments were indicated by the fluctuation/vibration of the recorded resistance and forces. The results show that the horizontal force(Fx) and vertical force (Fz) develope their frequencies as the change of velocity of blade (10, 20, 40 mm/sec) for each cutting angle (35, 45, 60 degrees). Resultant force of Fx and Fz are much influenced by the cutting angle.

  • PDF

Analysis of Variations in Mechanical Properties of Soil by Tillage Operations (경운작업에 의한 토양 역학적 특성의 변이 특성)

  • Park, J.G.;Lee, K.S.;Cho, S.C.;Noh, K.M.;Chung, S.O.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.

Spectral Analysis of On-the-go Soil Strength Sensor Data (이동식 토양 강도 센서 데이터 주파수 분석)

  • Chung, Sun-Ok;Suduth, Kenneth A.;Tan, Jinglu
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.355-361
    • /
    • 2008
  • As agricultural machinery has become larger and tillage practices have changed in recent decades, compaction as a result of wheel traffic and tillage has caused increasing concern. If strategies to manage compaction, such as deep tillage, could be applied only where needed, economic and environmental benefits would result. For such site-specific compaction management to occur, compacted areas within fields must be efficiently sensed and mapped. We previously developed an on-the-go soil strength profile sensor (SSPS) for this purpose. The SSPS measures within-field variability in soil strength at five soil depths up to 50 cm. Determining the variability structure of SSPS data is needed for site-specific field management since the variability structure determines the required intensity of data collection and is related to the delineation of compaction management zones. In this paper, soil bin data were analyzed by a spectral analysis technique to determine the variability structure of the SSPS data, and to investigate causes and implications of this variability. In the soil bin, we observed a repeating pattern due to soil fracture with an approximate 12- to 19-cm period, especially at the 10-cm depth, possibly due to cyclic development of soil fracture on this interval. These findings will facilitate interpretation of soil strength data and enhance application of the SSPS.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

A Data Acquisition System based upon a Single-board Microcomputer (단일보드 마이크로 컴퓨터를 이용한 자료(資料) 수집장치(蒐集裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.221-228
    • /
    • 1989
  • A data acquisition system was designed to measure the forces on a rolling coulter in three coordinated directions, angular velocity of the coulter and travel speed of a soil bin. The data acquisition system consisted of a dynamometer, speed transducers, a signal conditioner, an inter-face board, an Aim-65 microcomputer and a digital data recorder. Strain gages were attached on the surface of the dynamometer and connected to form three Wheatstone bridges, which measure the draft force, the vertical force and the side force on the coulter. An interaction among three dimensional forces was found during the calibration. A matrix procedure was used to correct the forces for this interaction. Rotary shaft encoders were mounted on the coulter and on the soil bin drive to measure the angular velocity of the coulter and the travel speed of the soil bin. The angular velocity and the travel speed were computed by counting the number of pulse signals from the rotary shaft encoders every 0.2 second. The digital signals from the rotary shaft encoders were connected to counters and the analog signals from the dynamometer, after passing through the signal conditioner, were connected to the A/D converter. The microcomputer programs, written in assembly language, were developed to read signals from the transducers, convert them to actual unit, display them upon request and record them on a sigital tape every 0.2 second.

  • PDF

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

A Study on the Development of Soil Moisture Measuring Unit (인공토조용(人工土槽用) 토양함수율(土壤含水率) 측정기(測程器) 개발(開發)에 관(關)한 연구(硏究))

  • Park, J.G.;Lee, S.K.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.14-22
    • /
    • 1986
  • This study was carried out to find a method which can be used to measure the soil moisture content of the soil bin exactly and quickly. And gypsum block is used as an instrument in measuring soil moisture content in the field of green house farming, etc.. However the characteristics of gypsum block, or the guide line of making gypsum block is not well introduced in Korea. So the information about gypsum block such as the density of gypsum, type of electrode, dimension of electrode, distance between electrodes, density of surrounding soil were included in this study and their effects on the relationship between soil moisture content and electrical resistance were investigated. The results of this study are as follows; 1. The grid type electrode was quicker in accessing the equilibrium condition and showed more sensitive response to the change of soil moisture content than the plate type electrode. 2. The longer the distance between the electrodes, the larger the electrical resistance, and the distance of 3 to 5 mm was recommended. 3. The larger the width of the electrode, the smaller the electrical resistance. However, there was no significance between the levels designed in this study. Considering the size of the gypsum block itself, the adaptible range of width may be 4 to 8 mm. 4. The higher the density of gypsum, the smaller the electrical resistance. And the block of lower density was broken down in the soil of higy moisture content. The optimum ratio of gypsum to water was 7:5. 5. The measuring system used in this study allowed simultaneous, multi-data acquisition. So this system using A/D converter can be applied to the measurement of soil moisture content of soil bin.

  • PDF