• Title/Summary/Keyword: Soil-bentonite Cutoff Wall

Search Result 9, Processing Time 0.026 seconds

Performance of Soil-Bentonite Cutoff Wall considering Defects and Formation of Bentonite Cake

  • Nguyen, The Bao;Lee, Chul-Ho;Lim, Jee-Hee;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1264-1273
    • /
    • 2010
  • Soil-bentonite cutoff walls are widely recognized to be the effective barrier for containment of wastes and groundwater. Bentonite cake is usually found remaining on the trench surface due to the use of bentonite slurry during the excavation for the cutoff wall construction. Defects also inevitably take place due to the inappropriate construction procedures or improperly mixed soil-bentonite backfill. The defects include insufficient keys and windows in the soilbentonite cutoff wall. In this study, the performance of the soil-bentonite cutoff wall is evaluated based on the flow rates through the wall. Three-dimensional numerical models were applied to simulate the groundwater flow through the soil-bentonite cutoff walls of typical geometries with consideration of the defects and bentonite cake. Results of the simulations showed that the bentonite cake has no effect in the insufficient key cases. In the keyed wall cases, the bentonite cake with very low hydraulic conductivity significantly impedes the flow of groundwater through the wall. The presence of the bentonite cake not only compromises the window defect but also renders the wall construction more effective in blocking the groundwater flow. These findings show the significance of the bentonite cake in a soil-bentonite cutoff wall construction.

  • PDF

Characteristics of Bentonite Filter Cake on Vertical Cutoff Walls Evaluated by Modified Fluid Loss Test (수정 fluid loss 시험을 이용한 연직 차수벽에 생성된 벤토나이트 필터케익 특성 평가)

  • Nguyen, The-Bao;Park, Moon-Seo;Lim, Jee-Hee;Choi, Hang-Seok;Han, Shin-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.53-62
    • /
    • 2011
  • During the construction of vertical cutoff walls, filtration of bentonite slurry into the adjacent soil formation fabricates a layer of bentonite filter cake on the wall surface. The bentonite filter cake possesses much lower hydraulic conductivity compared to that of backfill materials in the cutoff wall. Hydraulic conductivity of bentonite filter cakes formed with three different types of bentonites has been measured by performing the modified fluid loss test under various pressure levels. Three different mixture ratios, 4, 6, and 8%, were selected for fabricating bentonite filter cakes to represent common field conditions. Two analysis methods for interpreting the experimental data from the modified fluid loss tests were employed to estimate hydraulic conductivity of the bentonite cakes. The range of hydraulic conductivities of the three bentonite cakes is between $2.15{\times}10^{-11}\;m/s$ and $2.88{\times}10^{-10}\;m/s$ which is 1 to 2.7 orders of magnitude lower than that of the design cutoff wall backfill. The stress distribution and thickness of the bentonite cakes were also evaluated in this paper.

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Consideration of Bentonite Cake Existing on Vertical Cutoff Wall in Slug Test Analysis (벤토나이트 케익을 고려한 연직차수벽의 순간변위시험(slug test) 해석)

  • Lim, Jeehee;Nguyen, The-Bao;Lee, Dongseop;Ahn, Jaeyoon;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.5-17
    • /
    • 2013
  • Slug tests can be adopted to estimate hydraulic conductivity of the slurry trench wall backfill for its abilities to reflect the in-situ performance of the construction. A comprehensive three-dimensional numerical model is developed to simulate the slug test in a slurry trench wall considering the presence of bentonite cake on the interface boundaries between the wall and the surrounding soil formation. Influential factors such as wall width (i.e., proximity of wall boundary), well deviation, vertical position of well intake section, compressibility of wall backfill, etc. are taken into account in the model. A series of simulation results are examined to evaluate the bentonite cake effect in analyzing practical slug test results in the slurry trench wall. The results show that the modified line-fitting method can be used without any correction factor for the slug test in the slurry trench wall with the presence of bentonite cake. A case study is reanalyzed with the assumption of existing bentonite cake. The results are compared with the previously reported results by the approaches assuming no bentonite cake (constant-head boundary) or upper-bound solution (no-flux boundary). The case study demonstrates the bentonite cake effect and the validity of the modified line-fitting method in the estimation of the hydraulic conductivity of the slurry wall backfill.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

Assessment of the Hydraulic Conductivity of the Furnace Slag Coated with the Mixture of Bentonite-sepiolite-guargum under Sea Water Condition (벤토나이트-해포석-구아검 혼합물질이 코팅된 제강슬래그의 해수에 대한 투수성 평가)

  • Cheong, Eui-Seok;Rhee, Sung-Su;Woo, Hee-Soo;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Bentonite has been generally used as vertical cutoff barrier material and reported to have several problems regarding its low workability, drying shrinkage cracking by particle cohesion, and ineffective waterproof ability under sea water condition. In this study, the particle sealant, the furnace slag coated by the mixture of bentonite, sepiolite and guargum, was developed to compensate these weak points and the hydraulic conductivity of the particle sealant was evaluated. Drying shrinkage cracking and swelling index was estimated to find the optimal mixing ratio of bentonite, sepiolite and guargum. The hydraulic conductivity of the particle sealants having different amount of sealant (bentonite-sepioliteguargum mixture) coating the furnace slag was estimated using the rigid wall permeameter and flexible wall permeameter. The results showed that drying shrinkage cracking was not found in the bentonite-sepiolite mixture with 20% sepiolite contents and the results from free swelling tests for the sealant having 1 : 0.025, 1 : 0.05 and 1 : 0.075 of weight ratios of bentonite-sepiolite mixture and guargum under simulated sea water condition were higher than those for the bentonitesepiolite mixture without guargum under tap water condition. These three sealants were coated on the furnace slag with 50% and 60% of sealant in the particle sealant and the hydraulic conductivity was estimated. In the cases of the particle sealants having 20% sepiolite in the bentonite-sepiolite mixture and 1 : 0.075 weight ratio of the bentonite-sepiolite mixture and guargum, the hydraulic conductivity from the rigid wall permeameter was below $1.0{\times}10^{-7}$ cm/sec under simulated sea water condition. The hydraulic conductivity of the particle sealant having $1.0{\times}10^{-6}$~$1.0{\times}10^{-7}$ cm/sec by the rigid wall permeameter was estimated using the flexible wall permeameter and found to be below $1.0{\times}10^{-7}$ cm/sec.

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake (필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok;Kim, Sang-Gyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.121-131
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

Characteristic of Permeability with the Sand, Calcium Bentonite and Solidifier Mixtures according to Selective Reaction of TCE (트리클로로에틸렌(TCE) 선택적 반응에 따른 모래, 칼슘-벤토나이트 및 겔화제 혼합차수물의 투수 특성)

  • Yun, Seong Yeol;Choi, Jeong Woo;Oh, Minah;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • To improvement the swelling characteristics of the existing cutoff wall against the moisture, the permeability of the sand, calcium bentonite and solidifier mixture according to the contact with trichloroethylene (TCE) was evaluated. Characteristics analysis and the permeability test of the research materials were performed. The permeability was decreased as the mixing ratio of the calcium bentonite was increased and it was increased as the mixing ratio of the solidifier was increased. In conclusion, when mixing 15% of calcium bentonite and more than 30% of solidifier, the permeability coefficient in the underground water movement was analyzed as more than α × 10-4 cm/sec showing that it does not block the underground water movement. In addition, as the permeability coefficient of mixtures after TCE reaction was analyzed as less than α ×10-7 cm/sec, it satisfied the condition of blocking layer (less than 1.0 × 10-6 cm/sec). Therefore, the calcium bentonite and solidifier can be utilized as barrier that showing the characteristic of percolation ability conversion in soil and underground water contaminated with TCE.