• Title/Summary/Keyword: Soil water changes

Search Result 807, Processing Time 0.033 seconds

Effect of Chlorella vulgaris CHK0008 Fertilization on Enhancement of Storage and Freshness in Organic Strawberry and Leaf Vegetables (Chlorella vulgaris CHK0008 시비가 유기농 딸기와 엽채소의 저장성과 신선도 향상에 미치는 영향)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Hong, Sung-Jun;Ji, Hyeong-Jin;Han, Eun-Jung;Yoon, Jung-Chul
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.872-878
    • /
    • 2014
  • This study aimed to enhance storage and freshness of strawberry fruits and foliage vegetables by spray treatment with Chlorella vulgaris as a bio-fertilizer. The tested strain, C. vulgaris CHK0008, was isolated from an organically cultivated rice paddy and identified as C. vulgaris by its morphology and 18S rDNA and 23S rDNA sequence homology. We successfully cultured C. vulgaris CHK0008 in BG11 modified medium (BG11MM) and adjusted $2.15{\times}10^6cell/mL$ C. vulgaris CHK0008 to one OD value by measuring the optical density at 680 nm using a UV-vis spectrophotometer. The soluble solid content of 'Seolhyang' and 'Yukbo' strawberry fruits treated by spray application with C. vulgaris CHK0008 was enhanced by 22.2% and 11.5% respectively, compared to untreated controls. Additionally, the decay rates of treated 'Seolhyang' and 'Yukbo' strawberry fruits decreased 63.8% and 74.4% respectively, compared to untreated control. Surface color changes and chlorosis of leaves in leaf vegetables such as lettuce, kale, red ornamental kale, white ornamental kale and beet were observed in samples treated with water spray for 10 days after cold storage. However, the decay rate of leafy vegetables treated with foliar application of 25% C. vulgaris CHK0008 liquid culture was significantly decreased compared to that of the untreated control during storage at $4^{\circ}C$.

Mineral Leaching from Air-Dried Forages (마른 목초(牧草) 잎으로 부터의 무기물(無機物) 용출(溶出))

  • Kim, S.D.;YOSHIDA, Shigekata
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.265-272
    • /
    • 1999
  • In this study in order to know the behavior of mineral nutrients from forage plant to soil in a grassland ecosystem, the leaching of minerals (K, Mg, Ca, N and P) from air-dried (dead) plant body was investigated by putting orchardgrass (Dactylis glomerata L.) hay on meadow during a month with seasonal changes. The results obtained were as follows; 1) The K content of the forage, not stable during the experimental seasons, tended to decrease in the summer of 1986, while the Mg and Ca contents increased in the summer. The reason might be a different response (solubility or leaching liability) of the monovalent mineral (K) and divalent ones (Mg and Ca) in the forage to rainfall. 2) The percentage of P to the initial amount in the forage showed larger decrease in a rainy period (Feb.~Mar., 1986) and during the rainy summer (May to July). The P component of the forage might be easily leached with water. 3) The percentage of the four minerals (Ca, N, Mg, K) remained the least in the period of (Jun.~Jul., 1986), 4) Though the percentage of remained Mg and N of the forage varied very similarly, the percentage of remained N was higher than that of Mg during periods before summer (January to May), while after the period the ratio of the Mg seemed to be higher than that of the N (June to December), 5) During the periods until (May~Jun., 1986) the percentage of remained K and P of the forage varied in very similar pattern, and the order of remained mineral was as follows; $Ca>N{\geq}Mg>P=K$. But from the period of (Jun-Jul) the ratio of P remained in the forage increased nearly up to the ratio of N, and the order was as follows; $Ca>Mg{\geq}N{\geq}P>K$.

  • PDF

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Distribution of foodborne pathogens in red pepper and environment (고추와 재배환경의 식품매개 병원균 분포)

  • Jung, Jieun;Seo, Seung-Mi;Yang, SuIn;Jin, Hyeon-Suk;Jung, Kyu-Seok;Roh, Eunjung;Jeong, Myeong-In;Ryu, Jae-Gee;Ryu, Kyoung-Yul;Oh, Kwang Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.799-808
    • /
    • 2021
  • This study was performed to investigate the extent of microbial contamination, the presence of enterotoxin genes, and the antibiotic susceptibility of Bacillus cereus in 58 red pepper plants and 43 environmental samples (soil, irrigation water, and gloves) associated with the plant cultivation. The detected counts of total aerobic bacteria, coliform bacteria, Escherichia coli, Bacillus cereus, and Staphylococcus aureus were lower in these samples, as compared to the regulations of standards for foods; moreover, pathogens, such as E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp., were not detected. Genes encoding hemolysin BL enterotoxins (hblA, hblC, and hblD) as well as non-hemolytic enterotoxins (nheA, nheB, and nheC) were detected in 23 B. cereus specimens that were isolated from the test samples and had β-hemolytic activity. Interestingly, B. cereus is resistant to β-lactam and susceptible to non-β-lactam antibiotics. However, in this case, the isolated B. cereus specimens exhibited a shift from resistant to intermediate in response to cefotaxime and from susceptible to intermediate in case of rifampin, trimethoprim-sulfamethoxazole, vancomycin, clindamycin, and erythromycin. Therefore, the levels of B. cereus should be monitored to detect changes in antibiotic susceptibility and guarantee their safety.

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii (한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화)

  • Lee, Il-hwan;Jo, Soo-un;Lee, Young-sang;Won, Ho-yeon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.374-382
    • /
    • 2021
  • In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.