• Title/Summary/Keyword: Soil water changes

Search Result 812, Processing Time 0.032 seconds

A Study on the Variation of Groundwater Level in the Han River Estuary (The Effect of the Removing of a Weir) (한강 하구역에서의 지하수위 변화에 관한 연구(수중보 철거로 인한 영향))

  • Kim, Sang-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.589-601
    • /
    • 2008
  • The variation of groundwater level near the Shingok weir has been analyzed. To consider the soil inhomogeneity, coefficient of effective permeability was computed to be 0.313 m/day in the horizontal direction, and 0.0423 m/day in vertical direction. Anisotropic ratio is 7.19. The river water level drawdown (caused by the removing of the weir) causes the groundwater level drawdown, and 3 months are required for the new steady condition. and groundwater flows from Han river toward Gulpo stream before the removing of the weir, but when the weir removed, the flow direction changes. The groundwater level falls maximum 30 cm in the areas under the influence of Han river, but, in the areas near Kulpo stream, groundwater level falls about 10 cm. The amount of groundwater use in the study area was investigated to be $52m^3/day$ and in this condition, groundwater level falls maximum 1m (before or after the removing of Shingok weir). therefore, the variation of groundwater level caused by the removing of Shingok weir is less than that caused by the usual use of groundwater.

Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

  • Kim, Nam-Gyu;Seo, Eun-Young;Han, Sang-Hyuk;Gong, Jun-Su;Park, Cheol-Nam;Park, Ho-Seop;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004.

Constant Rate of Strain Consolidation Test with Rowe Cell on the Clay with Sand Seam (샌드심이 존재하는 점토에 Rowe Cell를 이용한 일정변형률 압밀시험)

  • Kim, Jae-Hong;Kim, Chan-Kee;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.5-13
    • /
    • 2017
  • The sand layer deposited in clay is called a sand seam, which is formed by inflow of sands due to river flooding or slope failure in the middle of sinking and sediment of clay. When the sand seam exists in clay layer, the drainage direction changes from one way to both ways, and the time of consolidation may be reduced. However, it is not clearly proved due to lack of studies of sand seam and currently is not reflected in the design of soft soil improvement. As a fundamental study about sand seam, the oedometer tests and constant rate of strain tests with Rowe cell were conducted on clay specimens with sand seam. For tests, a frozen method was specially designed for making the sand seam. It was concluded that the test results showed the sand seam affects the coefficient of consolidation of clay. If the thickness of sand seam exceeds 0.05 times of specimen height, the sand seam works as drainage layer of pore water horizontally as well as vertically, and consequently the consolidation is accelerated.

Improving Moisture Retention Capacity of Pine Bark by Grinding and Blending with Recycled Rockwool (분쇄와 폐암면의 혼합에 의한 소나무 수피의 보수성 증진)

  • Choi, Jong-Myung;Chung, Hae-Joon;Choi, Jong-Seung
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.131-135
    • /
    • 1999
  • The objective of this research was to improve moisture retention capacity of pine bark. To achieve this, barks were ground with Wiley mill of hammer mill and were blended with recycled rockwool. Then, changes of soil physical properties were determined. The percentage of particles larger than 5.6 mm was 86.5% in raw materials. The percentage of particles larger than 1 mm decreased and those of particles smaller than 1 mm increased by grinding with Wiley mill or hammer mill. Grinding with Wiley mill showed better effect than those of hammer mill in decreasing particle size distribution. Grinding resulted in decreased total porosity (TP) and air space (AS) and increased container capacity (CC) and residual water content (RW), indication improved moisture retention capacity. The material ground with Wiley mill, than blended with 50% recycled rockwool had 81.1%, 67.7%, 13.5% and 235 ml in TP, CC, AS and RW, respectively. These results indicated that moisture retention capacity was improved by blending with recycled rockwood, but aeration of root media was much better than those of peat+vermiculite(1:1, v/v), which is commonly used in commercial production.

  • PDF

Effect of Inhibitors of Ethylene Production on Growth and Gravitropism Inhibited by Oryzalin in Arabidopsis Roots (애기장대 뿌리에서 ethylene 생성 억제제가 oryzalin에 의해 억제된 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ho Yeon;Ahn, Donggyu;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.280-286
    • /
    • 2021
  • Oryzalin is a herbicide that disrupts the arrangement of microtubules by binding to tubulin, thereby blocking the anisotropic growth of plant cells. Microtubules and microfilaments are cytoskeleton components that have been implicated in plant growth through their influence on the formation of cell walls. Microtubules also play roles in the sedimentation of amyloplasts in the root tip columella cells; this sedimentation is related to gravity sensing and results in downward root growth in the soil for absorption of water and minerals. However, the orientation of microtubules changes depending on the level of ethylene in plant cells. A recent study reported that oryzalin stimulated ethylene production via 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase and caused a concentration-dependent inhibition of root growth and gravitropic responses. The aim of the present study was to investigate the possibility that oryzalin-induced inhibition might be recovered by the application of inhibitors of ethylene production, such as 10-4 M cobalt ions and 10-8 M aminoethoxyvinylglycine (AVG). The inhibition of root growth and gravitropic response was overcome by 10-20% by an 8 hr treatment with cobalt ions or AVG. These results suggest that ethylene levels could regulate root growth and gravitropic responses in Arabidopsis.

Karst Studies in the Korean Geographical Society: Achievements for the Past Fifty Years (한국 지리학계의 카르스트 연구)

  • PARK, Sunyurp
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.127-140
    • /
    • 2011
  • Research achievement of Korean geographers on karst studies was evaluated based on the number of publications for the past fifty years, which were divided into four main periods, including beginning, youth, growth, and maturity stages. The descriptive statistics of research papers published in major geography journals were computed and these articles were classified according to their main subjects and study areas. The role of moisture is particularly important in Karst geomorphology compared to the other geomorphological fields. The morphology, landscape, and formation processes of tropical and temperate karst are different from each other, and the regional and altitudinal characteristics of karst environments are significantly diverse. Thus, it is likely that the detailed records of climatic changes are preserved in the northeast Asian karst landform. Since karst geomorphology can be a major cause of natural hazards, such as collapsed surfaces or subsidence, which are associated with anthropogenic activities, including underground-water pumping and land use, education and training of physical geographers, specializing on monsoon effects, distributions of limestone, and soil characteristics, are critical issues to foster the capacity of disaster management in the nation. Moreover, knowing that the unique and spectacular landscape of karst geomorphology is a valuable, natural resource of tourism and has aesthetic values on its own, contributions of geographers to the introduction, conservation, research, and development of karst environment should be emphasized.

Trace Metal Contamination and Solid Phase Partitioning of Metals in National Roadside Sediments Within the Watershed of Hoidong Reservoir in Pusan City (부산시 회동저수지 집수분지 내 국도도로변 퇴적물의 미량원소 오염 및 존재형태)

  • Lee Pyeong-Koo;Kang Min-Joo;Youm Seung-Jun;Lee In-Gyeong;Park Sung-Won;Lee Wook-Jong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.20-34
    • /
    • 2006
  • This study was undertaken to assess the anthropogenic impact on trace metal concentrations (Zn, Cu, Pb, Cr, Ni, and Cd) of roadside sediments (N = 70) from No.7 national road within the watershed of Hoidong Reservoir in Pusan City and to estimate the potential mobility of selected metals using sequential extraction. We generally found high concentrations of metals, especially Zn, Cu and Pb, affected by anthropogenic inputs. Compared to the trace metal concentrations of uncontaminated stream sediments, arithmetic mean concentrations of roadside sediments were about 7 times higher for Cu, 4 times higher for Zn, 3 times higher for Pb and Cr and, 2 times higher for Ni and As. Speciation data on the basis of sequential extraction indicate that most of the trace metals considered do not occur in significant quantities in the exchangeable fraction, except for Cd and Ni whose exchangeable fractions are appreciable (average 29.3 and 25.8%, respectively). Other metals such as Zn (51.4%) and Pb (45.2%) are preferentially bound to the reducible fraction, and therefore they can be potentially released by a pH decrease and/or redox change. Copper is mainly found in the organic fraction, while Cd is highest in the exchangeable fraction, and Cr and Ni in the residual fraction. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Cd>Ni>Pb>Zn>Cr>Cu. Although the total concentration data showed that Zn was typically present in potentially harmful concentration levels, the data on metal partitioning indicated that Cd, Ni and Pb pose the highest potential hazard for runoff water. As potential changes of redox state and pH may remobilize the metals bound to carbonates, amorphous oxides, and/or organic matter, and may release and flush them through drain networks into the watershed of Hoidong Reservoir, careful monitoring of environmental conditions appears to be very important.

Studies on the Nitrogen Metabolism of Soybeans -II. Variation of Free Amino acids during the Growth of Younger Plants (대두(大豆)의 질소대사(窒素代謝)에 관(關)한 연구(硏究) -II. 유(幼) 식물시기(植物時期)에서의 유리(遊離)아미노산(酸)의 소장(消長))

  • Kang, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 1970
  • In an effort of determine the metabolism and bio-synthesis of nitrogen, was studied at variance of souble nitrogens, free amino acids and total alcohol soluble amino acids during the growth of younger soybean plants, and saybean divides into cotyledon and embryonic organ (shoot and root system) in this experiment. 1. In the soluble nitrogen of soybean, ratio of increase and decrease in the amino acids of them was displayed the near phenomena both cotyledon and embryonic organ of soybean. But, in the 17th days after seed germination, that is the developmeatal stage of adult leaf of soybeans, was appear the maximum value. It has been suggested that the stage of first half period of growth as boundary the stage of adult leaf development which indicated clear morphologically, at the younger soybean plants, is the step that nitrogen assimilation. 2. It was investigated the amino acids of seventeen kinds in the seed state, but at the third days after seed germination, was investigated the amino acids of nineteen kinds. Ultimately, it appears the translocation from cotyledon to embryonic organ in the distribution of amino acid, the nineth day which differentiation begining day of embryonic organ, then after, it happen the variation of number of inspected amino acid in the cotyledon and embryonic organ but only the variance changes in the distribution and quantitative aspects. Especially, the most conspicuous fact was indicated the accumulation of Asparagine, that is the phenomena of Asparagine-accumulation was constitute, not with standing no fertilization from outside. It may be concluded from the results of this investigation that the difference of special phenomena of soybean from the embryo of other plans. 3. In the initial stage of differentiation at embryonic organ number of inspected amino acid was very few, and then, it was slightly appeared the increase-phenomena in the number of them. It was that the amino acid inspecting the initial stage was translocated from the cotyledon. It is suggested that the intermediate-metabolism of amino acid was constituted on the basis of above the result. 4. The phenomena of increase and decrease of total alcohol soluble amino acid were essentially identical to the water soluble amino acid of soybean, but it was appeared the severe difference of amounts in both of them.

  • PDF

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.