• 제목/요약/키워드: Soil transmission

검색결과 160건 처리시간 0.026초

인삼의 온도에 대한 생리반응 II. 엽의 생리, 지온, 기온, 병환의 생육 (Physiological Response of Panax Ginseng to Tcmpcrature II. Leaf physiology, soil temperature, air temperature, growth of pathogene)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제4권1호
    • /
    • pp.104-120
    • /
    • 1980
  • The effects of temperature on transpiration, chlorophyll content, frequency and aperture of stomata, and leaf temperature of Panax ginseng were reviewed. Temperature changes of soil and air under spade roof were also reviewed. Growth responses of responses of ginseng plant at various temperature were assessed in relation to suseptibillity of ginseng plants. Reasonable management of ginseng fields was suggested based on the response of ginseng to various temperatures. Stomata frequency may be increased under high temperature during leaf$.$growing stage. Stomata aperture increased by high temperature but the increase of both frequency and aperture appears not enough for transpiration to overcome high temperature encountered during summer in most fields. Serial high temperature disorder, i.e high leaf temperature, chlorophyll loss, inhibition of photosynthesis, increased respiration and wilting might be alleviated by high humidity and abundant water supply to leaf. High air temperature which limits light transmission rate inside the shade roof, induces high soil temperature(optimum soil temperature 16∼18$^{\circ}C$) and both(especially the latter) are the principal factors to increase alternaria blight, anthracnose, early leaf fall, root rot and high missing rate of plant resulting in poor yield. High temperature disorder was lessen by abundant soil water(optimum 17∼21%) and could be decreased by lowering the content of availability of phosphorus and nitrogen in soil consequently resulting in less activity of microorganisms. Repeated plowing of fields during preparation seems to be effective for sterilization of pathogenic microoganisms by high soil temperature only on surface of soils. Low temperature damage appeared at thowing of soils and emergence stage of ginseng but reports were limited. Most limiting factor of yield appeared as physiological disorder and high pathogen activity due to high temperature during summer(about three months).

  • PDF

지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구 (Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel)

  • 이향범;이병철;김정훈;남용현;강지원
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

Establishment of the Chickpea Wilt Pathogen Fusarium oxysporum f. sp. ciceris in the Soil through Seed Transmission

  • Pande S.;Rao, J. Narayana;Sharma M.
    • The Plant Pathology Journal
    • /
    • 제23권1호
    • /
    • pp.3-6
    • /
    • 2007
  • Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris(FOC) is the most destructive disease in India. It is seed-borne as well as soil-borne pathogen. The role of seed-borne FOC in introducing and establishing wilt in FOC free soils is unknown. Using seeds of FOC infected chickpea cultivar K 850, we provided an evidence of establishing wilt disease in the FOC free soils within three crop cycles or seasons. In the first cycle, typical wilt symptoms were observed in 24 pots in 41 days after sowing. These 24 pots were used for second and third cycles without changing the soil. These 24 pots were sown with seeds collected from healthy plants of a susceptible cultivar JG 62, one seed per pot and development of wilt symptom was recorded. Wilt symptoms appeared in all the pots 26 days after sowing in second cycle and in 16 days after sowing in third cycle. On selective medium, all of the wilted plants yielded FOC in all the three cycles indicating that the mortality was due to wilt. FOC propagules on selective medium were 172, 1197, and 2280 $g^{-1}$ soil at the end of the first, second, and third cycles, respectively. These studies indicated that Fusarium wilt of chickpea is seed-borne and seeds harvested from wilted plants when mixed with healthy seeds can carry the wilt fungus to new areas and can establish the disease in the soil to economic threshold levels within three seasons.

가공송전선 지락시 고장전류의 접지분류계수 산정에 관한 연구 (A Study on Calculation of Line- To-Ground Fault Current Split Factor to Earth in Overhead Transmission Lines)

  • 최종기;이원교;최인혁;이상윤;황갑철
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1929-1932
    • /
    • 2008
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system.

강원도 태백지역의 붕적층 절토사면의 변형특성 (Deformation Characteristics of Cut-Slope Composed of Colluvial Soil in Tae Baek Area)

  • 김경열;이대수;홍성연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.467-474
    • /
    • 2002
  • Colluvial sell has a very unique deformation property, particularly when it is subject to the cutting work entailed in a variety of construction. In this study, the cut slope tying on a colluvial layer in which the transmission tower had been installed were investigated to find out the cause of deformation. In-situ tests such as boring, surface-wave analysis (MASW) were employed to look into the physical composition of underground layers and FEM including LEM were carried out to simulate the construction steps. The result shows that the stress relaxation followed by road construction induced the deformation of the slope and damage in the foundation of the transmission tower.

  • PDF

500[kV] 송전철탑 접지설계를 위한 다층토양구조의 균일매질 등가화에 관한 연구 (A Study on the Identification of Equivalent Uniform Soil Model for Grounding Design of 500[tV] Transmission Towers)

  • 최종기;이성두;이동일;정길조;김경철
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.22-28
    • /
    • 2005
  • 접지설계에 있어서 토양의 전기적 특성은 접지극의 형상과 더불어 가장 중요한 설계요소 중 하나이며 이러한 토양의 전기적 특성은 접지극이 매설될 지역의 고유한 저항률, 즉 고유저항률(specific earth resistivity)로 대표되어 왔다. 이처럼 고유저항률에 근거한 수작업 접지설계는 복잡한 구조와 특성을 갖는 실제 토양을 균일한 매질로 등가 화하는 절차를 필요로 한다. 본 논문에서는 미얀마 500[kV] 송전철탑 수작업 접지설계를 위하여 수평다층토양을 균일 매질로 등가화 하는 절차를 제시하였다.

지중 송전 케이블 선로임피던스 계산 및 실측 (The line impedance calculation and measurement of the underground transmission cable)

  • 김남열;김정년;허회덕;이수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.405-407
    • /
    • 2006
  • The power system analysis based on the accurate impedance of the individual underground cable, which is the inter connected to a large power system, is required. A study on calculation method of impedance allowable current for underground cables. furthermore, various methods of bonding and earthing the sheath have been used for the purpose of eliminating or reducing the sheath losses. the effectes of bonding and earthing must be includied in impedances. therefore, the subject of predicting thermal performance of soil and cable systems has been received increasing attension. for these problems, this paper describes a general formulation of impedance that is based on the effect of crossbonding and earthing of the sheath on the 66kV, 132kV and 220kV underground cable systems. also the work is presented, for calculating the temperature rise of power cable and soil.

  • PDF

Genome Analysis of Phage SMSAP5 as Candidate of Biocontrol for Staphylococcus aureus

  • Lee, Young-Duck;Park, Jong-Hyun
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.86-90
    • /
    • 2015
  • In this study, we reported the morphogenetic analysis and genome sequence by genomic analysis of the newly isolated staphylococcal phage SMSAP5 from soil of slaughterhouses for cattle. Based on transmission electron microscopy evident morphology, phage SMSAP5 belonged to the Siphoviridae family. Phage SMSAP5 had a double-stranded DNA genome with a length of 45,552 bp and 33 % G+C content. Bioinformatics analysis of the phage genome revealed 43 open reading frames. A blastn search revealed that its nucleotide sequence shared a high degree of similarity with that of the Staphylococcus phage tp310-2. In conclusion, this study is the first report to show the morphological features and the complete genome sequence of the phage SMSAP5 from soil of slaughterhouses for cattle.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Investigating the role of nano in preserving the environment with new energy and preventing oil pollution

  • Yong Huang;Lei Zhang
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.541-550
    • /
    • 2023
  • The escalating growth of industrial sectors has led to a pervasive global problem—oil pollution, particularly in industrial areas. The release of substantial volumes of oil and its by-products into the environment has resulted in extensive contamination. Multiple factors contribute to the entry of these substances into water bodies and soils, thereby inflicting irreparable consequences on ecosystems, natural resources, and human health. Consequently, it becomes imperative to comprehend the characteristics and behavior of oil pollution, anticipate its impacts, and develop effective mitigation strategies. Understanding this intricate issue requires considering the physicochemical properties of the environment, the interactions between oil and sediments, and biological factors such as evaporation and dissolution. Although the oil industry has brought about remarkable advancements, its activities have raised significant concerns regarding pollution from extraction and production processes. Oil-rich nations face a particularly challenging predicament of soil pollution caused by petroleum compounds. The areas surrounding oil exploration mines and refineries often endure contamination due to oil leakages from storage tanks and transmission lines resulting from deterioration and damage. Investigating the dispersion of such pollutants and devising methods to remediate petroleum-contaminated soil represent crucial and intricate issues within the realm of environmental geotechnics.