• 제목/요약/키워드: Soil transmission

검색결과 160건 처리시간 0.027초

Experimental Research on Impulse Breakdown Characteristics of Soil

  • Lee, Jaebok;Sughun Chang;Sungho Myung;Yuengue Cho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권2호
    • /
    • pp.60-63
    • /
    • 2004
  • The electrical breakdown characteristics of different types of soil samples have been measured. It is shown that the threshold soil breakdown strength is affected by many factors, such as types of soil, grain size, and soil compaction. The breakdown process in the test soil samples appears to be due to air ionization in the voids between the soil particles. The results have been compared with the relevant experimental results of other researchers.

수박에 오이녹반모자이크바이러스의 토양전염과 예방대책 (Soil Transmission of Cucumber green mottle mosaic virus and Its Control Mensures in Watermelon)

  • 최국선;김재현;김정수
    • 식물병연구
    • /
    • 제10권1호
    • /
    • pp.44-47
    • /
    • 2004
  • 오이녹반모자이크바이러스(CGMMV)가 오염된 포장에서 이 바이러스병의 토양전염율은 0.2∼3.5%였다. 경작지 토양과 같이 습도가 적당히 유지된 토양에서 CGMMV의 생물활성 지속기간은 17개월 후에는 바이러스의 활성이 손실되었으나, 담수 토양에서는 33개월 이상 이 바이러스의 생물활성이 유지되었다. CGMMV의 토양전염을 억제하기 위하여 정식직전 수박 묘의 뿌리를 10% 탈지분유액에 침지하여 정식한 처리구에서는 이 바이러스병이 발병되지 않았으나, 무처리구에서는 5.0∼7.6%가 발병되었다. 탈지분유액을 처리한 뿌리를 주사전자현미경으로 관찰한 결과 뿌리 주위로 얇은 막이 형성되어져 있었다.

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Investigation of Large-scale Transmission Tower Grounding Grid with High Amplitude and Uniform Flowing Impulse Current

  • Yang, Shuai;Huang, Jiarui;Wei, Shaodong;Zhou, Wenjun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2050-2058
    • /
    • 2018
  • Impulse characteristic of transmission tower grounding grid is needed for lightning protection of transmission line. This paper describes an outdoor experimental test facility established for large-scale grounding grid of transmission tower, made up of four impulse current generators and a circle current return electrode. The amplitude of impulse current is up to 100 kA. The results of the CDEGS simulation and GPR measurement reveal the uniform current distribution in the test arrangement. An impulse test for a square electrode with extended conductors is carried out in condition of three current waveforms with different amplitude. Based on the electrical network model and iterative algorithm method, a calculation model is proposed to simulate the impulse characteristic of large-scale grounding grid considering soil ionization. The curve of impulse resistance against the current amplitude shows the soil ionization both from the simulation and test. Deviation between the simulation and test result is less than 15%.

Numerical modeling on the stability of slope with foundation during rainfall

  • Tran, An T.P.;Kim, Ah-Ram;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.109-118
    • /
    • 2019
  • The movement of soil along a slope during rainfall can cause serious economic damage and can jeopardize human life. Accordingly, predicting slope stability during rainfall is a major issue in geotechnical engineering. Due to rainwater penetrating the soil, the negative pore water pressure will decrease, in turn causing a loss of shear strength in the soil and ultimately slope failure. More seriously, many constructions such as houses and transmission towers built in/on slopes are at risk when the slopes fail. In this study, the numerical simulation using 2D finite difference program, which can solve a fully coupled hydromechanical problems, was used to evaluate the effects of soil properties, rainfall conditions, and the location of a foundation on the slope instability and slope failure mechanisms during rainfall. A slope with a transmission tower located in Namyangju, South Korea was analyzed in this study. The results showed that the correlation between permeability and rainfall intensity had an important role in changing the pore water pressure via controlling the infiltrated rainwater. The foundation of the transmission tower was stable during rainfall because the slope failure was estimated to occur at the toe of the slope, and did not go through the foundation.

Seismic analysis of transmission towers under various line configurations

  • Lei, Y.H.;Chien, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.241-264
    • /
    • 2009
  • In this paper, the dynamic behavior for a group of transmission towers linked together through electrical wires and subjected to a strong ground motion will be investigated in detail. In performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by using the efficient cable elements and the 3-D beam elements both considering geometric nonlinearities. In addition, to enhance the reliability and applicability of analytical outcome, a sophisticated soil-structure interaction model will be utilized in analyses. The strength capacities and the fracture occurrences for the main members of the tower are examined with the employment of the appropriate strength interaction equations. It is expected that by aid of this investigation, those who are engaged in code constitution or in practical designing of transmission towers may gain a better insight into the roles played by the interaction force between towers and wires and by the configurations of transmission lines under strong earthquake.

가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 - (A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation -)

  • 장석한;김희광;이강현;한경수;함방욱;정기선
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

지중송전계통의 송전용량평가를 위한 토양열특성 측정에 관한 연구 (A Study on the Soil Thermal Property Measurement for the Current Carrying Capacity Evaluation of Underground Transmission Power Cables)

  • 강지원;조성배;장태인;윤형희;김대경;정성환;최상봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2029-2031
    • /
    • 2000
  • This paper introduces an meanings of the soil thermal properties and an probe method to analyze the soil thermal property. And its method was applied to the soils surrounding the underground transmission power cables at S/S and C/H.

  • PDF

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

보강 흙벽의 열전도 특성 (Property of Thermal Conduction of Reinforced Soil Wall)

  • 장병욱;서동욱;박영곤
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.638-644
    • /
    • 1999
  • The objectives of the study are to investigate thermal conductivity(TC) and coefficient of thermal transmission (CTT) according to the type of soils, the presence of reinforceemnt, temperature, relative humidity and to analyze experimentally the characteristics of thermal transfer of reinforced soil wall. Results are summarized as follows ; 1) Clayey soil has high value of TC and CTT than sandy soil. 2) TC and CTT of reinforced soil wall is about 6∼17% higher than those of reinforced one, 3) It is founded that the effect of relative humidity on the soil wall is important at the same temperature and 4) As the temperature is high, it is appeared that TC and CTT are high.

  • PDF