• Title/Summary/Keyword: Soil talus

Search Result 13, Processing Time 0.021 seconds

The Distribution Characteristics Analysis of Block Stream and Talus Landform by Using GIS-based Likelihood Ratio in the Honam Region (GIS 기반 우도비를 이용한 호남지역 암괴류와 애추지형의 분포 특성 분석)

  • JANG, Dong-Ho;Kim, ChanSoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 2018
  • The main objective of this paper is to classify properties of the locational environment for each debris type by calculating likelihood ratio based on the correlation between the distributions for each type of debris landform. A total of 8 thematic maps, like as elevation, slope, aspect, curvature, topographic wetness index (TWI), soil drainage, geology, and landcover including with GIS spatial information generally used in this type of debris landform analysis. The results of this study showed that the block stream had a high likelihood ratio compared to talus in areas with relatively high elevation; and concerning slope, the block stream had a high likelihood ratio in a relatively low region than talus. Concerning aspect, a clear correlation could not be analyzed for each debristype, and concerning curvature, the block stream displayed a developed slope on the more concave valley than the talus. Analysis concerning TWI, the block stream displayed a higher likelihood ratio in wider sections than talus, and concerning soil drainage, the talus and block stream both displayed a high likelihood ratio in regions with well-drained soil. The talus displayed a high likelihood ratio in the order of metamorphic rocks, sedimentary rocks, and granite, while the block stream displayed a high likelihood ratio in the order of volcanic rocks, granite, and sedimentary rocks. In addition, concerning landcover, the likelihood ratio had the most concentrated distributed compared to natural bare land only concerning talus. Based on the likelihood ratio result, it can be used as basic data for extracting the possible areas of distribution for each debris type through the GIS spatial integration method.

Extraction of the Talus Distribution Potential Area Using the Spatial Statistical Techniques - Focusing on the Weight of Evidence Model - (공간통계기법을 이용한 애추 분포 가능지역 추출 - Weight of evidence 기법을 중심으로 -)

  • Yu, Jaejin;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.133-147
    • /
    • 2014
  • Reducing the range of target landform, is required to save the time and cost before real field survey in the case of inaccessible landform such as talus. In this study, Weight of Evidence modeling, which is a Target-driven spatial analysis statistics methods, has been applied to reduce the field survey range of target landform. In order to apply the Weight of Evidence analysis, a likelihood ratio was calculated on the basis of the result of correlation analysis between geomorphic factors and GIS information after selection of geomorphic factors regarding talus. A best combination, which has the biggest possibility for Talus Potential Index, was found by using SRC and AUC methods after calculating the number of cases for each thematic maps. This combination which includes aspect, geology, slope, land-cover, soil depth and soil drainage factors, showed quite high accuracy by 74.47% indicating the ratio of real existent talus to potential talus distribution.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

A Study on Shoreline Change in Hampyung Bay, Southwestern Coast of korea I. Sea-Cliff Erosion and Retreat (한국 서해 남부 함평만의 해안선 변화 연구 I. 해안절벽의 침식과 후퇴)

  • ;;;;;S-Y YANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • The coastline of Hampyung Bay, southwestern coast of Korea, was examined and measured in the field for the understanding of geomorphic changes and sea-cliff erosion processes. The Hampyung-Bay coastline is characterized by steep-face slope and soft soil and/or intensively weathered rock composition. Saw teeth-shaped coastline, and relict weathered basement-rock and "Island Stack" exposed on the beach surface are peculiar geomorphic features indicating active sea-cliff erosion. The coastline in the study area is continuously retreating with the following cyclic process: erosion of cliff base, gravitational landslide or mass wasting, formation of talus, and then erosion and removal of talus. In this study, sea-level rise during summer in the west coast of Korea is suggested as one of the key factors fur the removal of soil taluses and, thereby, accelerating sea-cliff erosion.f erosion.

Primary Succession on Talus Area at Mt. Kariwangsan, Korea (가리왕산 일대 돌서렁에서의 일차천이)

  • Lee, Kyu-Song;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.120-130
    • /
    • 1994
  • Stages of vegetation development on talus area were studied to examine temporal changes in species composition and vegetation structure, and to elucidate the mechanism of early patch formation. While ground coverage of lichens, which may form substrate for moss colonization and mitigate the heat-stress on rocks, decreased gradully, coverage of mosses increased slightly during primary succession. Ecological role of mossess related with water retention in community may be very important not only at pioneer stage but also at later stages because of little soil development on this talus area. Species diversity and species richness increased during the early stages of succession. Parthenocis년 tricuspidata and Sorbaria sorbifolia var. stellipa dominated in liana stage, Ulmus davidiana for. suberosa and Lindera obtusiloba in shrub stage, and Fraxinus rhynchophylla and Actinidia arguta in subtree stage, however, was composed of mixed forest of several tree species. U. davidiana for. suberosa, L. obtusiloba, Securinega suffruticosa and Rhus chinensis were relatively important woody species in early patch forming process. The results, however, suggested that early establishment on talus area might be strongly associated with chance for safe-site because both pioneer species and later species could take part in early patch forming process.

  • PDF

Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model (공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF

Riparian forest and environment variables relationships, Chichibu mountains, central, Japan (일본 Chichibu산지 계반림의 입지환경)

  • Ann, Seong-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Environmental Characteristics of Wind-Hole and Phytogeographical Values (풍혈의 환경 특성과 식물지리적 가치)

  • Kong, Woo-Seok;Lee, Slegee;Yoon, Kwanghee;Park, Heena
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.381-395
    • /
    • 2011
  • Present work aims to establish an integrated management system of environmental data base for nine typical wind holes or air holes in Korea. It basically deals with definition, geographical distribution, morphological pattern, physical characteristics and anthropogenic environments of wind hole to propose systematic preservation strategy of their periglacial landscape and flora, which are known to be sensitive to global warming. Wind hole, in which cool air blows out during the summer, but mild air comes out during the winter from a cave or hole, is frequently found on northwest- and north-facing slopes on the terminal point of steep talus, block field, and block stream, and can be categorized into three types, i.e., talus, cave and sink types. Environmental characteristics of nine wind holes are analyzed on the basis of their geology, landform, climate, soil, hydrology, vegetation, road, footpath, land-use, and management system, and relevant DB are prepared. Wind hole areas with unique landscape and ecological values need to be designated as a nature reserve, and zoning of core, buffer, and transitional zones are required for the multi-dimensional preservation of periglacial landscape and ecosystem. Phytogeographical values of glacial relict plants, including mountain cranberry(Vaccinium vitis-idaea) at its global southernmost limit at Bangnaeri wind hole, Hongchon County, Gangwon Province of Korea are discussed in detail as a floristic refugia in connection with climate change during the Pleistocene Epoch and potential in-situ and ex-situ preservation sites in the future.