• Title/Summary/Keyword: Soil spring model

Search Result 139, Processing Time 0.026 seconds

Dynamic response of integrated vehicle-bridge-foundation system under train loads and oblique incident seismic P waves

  • Xinjun Gao;Huijie Wang;Fei Feng;Jianbo Wang
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.149-162
    • /
    • 2024
  • Aiming at the current research on the dynamic response analysis of the vehicle-bridge system under earthquake, which fails to comprehensively consider the impact of seismic wave incidence angles, terrain effects and soil-structure dynamic interaction on the bridge structure, this paper proposes a multi-point excitation input method that can consider the oblique incidence seismic P Waves based on the viscous-spring artificial boundary theory, and verifies the accuracy and feasibility of the input method. An overall numerical model of vehicle-bridge-soil foundation system in valley terrain during oblique incidence of seismic P-wave is established, and the effects of seismic wave incidence characteristics, terrain effects, soil-structure dynamic interactions, and vehicle speeds on the dynamic response of the bridge are analyzed. The research results indicate that with an increase in P wave incident angle, the vertical dynamic response of the bridge structure decreased while the horizontal dynamic response increased significantly. Traditional design methods which neglect multi-point excitation would lead to an unsafe structure. The dynamic response of the bridge structure significantly increases at the ridge while weakening at the valley. The dynamic response of bridge structures under earthquake action does not always increase with increasing train speed, but reaches a maximum value at a certain speed. Ignoring soil-structure dynamic interaction would reduce the vertical dynamic response of the bridge piers. The research results can provide a theoretical basis for the seismic design of vehicle-bridge systems in complex mountainous terrain under earthquake excitation.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척 전.후 잔차류의 계절변화에 관한 연구)

  • Shin, Moon-Seup;vanagi, T.;Hong, Sung-Kun;Lee, Dong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.425-442
    • /
    • 2002
  • The land reclamation area of Saemangeum(Kunsan) is located between $126^{\circ}10'\;E{\sim}126^{\circ}50'\;E\;and\;35^{\circ}35'\;N{\sim}36^{\circ}05'\;N$ at the western coast of the Korean peninsula. The reclamation area of Saemangeum has a range of 5.6m spring tide and the maximum tidal current speed is about $1.41m\;s^{-1}$. In ordinary spring tide. Most of the sediments deposited on the tidal flats are transported from the Geum river, the Mankyung river and the Dongjin river. The soil in this area consists of silty sand with the depth of 10m to 30m. The wind in winter is strong from the direction of northwest. Saemangeum coastal area is being constructed 33km the sea dike and 40,100ha reclamation area. The purpose of this study Is to find the residual circulations in four seasons before and after the dike construction by a robust diagnostic and prognostic numerical model.

Projection of Consumptive Use and Irrigation Water for Major Upland Crops using Soil Moisture Model under Climate Change (토양수분모형을 이용한 미래 주요 밭작물 소비수량 및 관개용수량 전망)

  • Nam, Won Ho;Hong, Eun Mi;Jang, Min Won;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.77-87
    • /
    • 2014
  • The impacts of climate change on upland crops is great significance for water resource planning, estimating crop water demand and irrigation scheduling. The objective of this study is to predict upland crop evapotranspiration, effective rainfall and net irrigation requirement for upland under climate change, and changes in the temporal trends in South Korea. The changes in consumptive use and net irrigation requirement in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were determined based on the soil moisture model using historical meteorological data and climate change data from the representative concentration pathway (RCP) scenarios. The results of this study showed that the average annual upland crop evapotranspiration and net irrigation requirement during the growing period for upland crops would increase persistently in the future, and were projected to increase more in RCP 8.5 than those in RCP 4.5 scenario, while effective rainfall decreased. This study is significant, as it provides baseline information on future plan of water resources management for upland crops related to climate variability and change.

Development of Land Surface Model for Soyang river basin (소양강댐 유역에 대한 지표수문모형의 구축)

  • Lee, Jaehyeon;Cho, Huidae;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.837-847
    • /
    • 2017
  • Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.

Hydrograph Separation Using EMMA Model for the Coniferous Forest Catchment in Gwangneung Gyeonggido, Republic of Korea (I) - Determination of the End Members and Tracers -

  • Kim, Kyongha;Yoo, Jae-Yun;Jun, Jae-Hong;Choi, Hyung Tae;Jeong, Yong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • This study was conducted to choose end-members and tracers for application of End Member Mixing Analysis (EMMA) model for the coniferous forest catchment, Gwangneung Gyeongi-do near Seoul metropolitan of South Korea (N $37^{\circ}$ 45', E $127^{\circ}$ 09'). This coniferous forest of Pinus Korainensis and Abies holophylla was planted at stocking rate of $3.0stems\;ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored two successive rainfall events during ten days from June 26, 205 to July 5, 2005. Two storm events were selected to determine the end members and natural traces for hydrograph separation. The event 1 amounts to 161.9 m for two days from June 26 to 27, 2005. The event 2 precipitates to 139.2 mm for one day of July 1, 205. Throughfall, groundwater, soil water and stream water of the two events above were sampled through the bulk and automatic sampler. Their chemical properties were analyzed for prediction of the main tracer. The end members that contribute to the stream runoff were identified from the three components including groundwater, soil water and throughfall. Each component and stream water in the two events formed the suitable mixing diagram in case of chloride-nitrate ion and sulfate-potassium ion. Especially, chloride-nitrate ion was found to be the most suitable tracers for EMMA model in the two events.

Comparison of environmental characteristics at Cicuta virosa habitats, an endangered species in South Korea

  • Shin, Cha Jeong;Nam, Jong Min;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • Cicuta virosa is an endangered species in Korea, which is a southern marginal area. To conserve and restore habitats of this plant, we investigated water and soil environmental characteristics and vegetation at four habitats during the growing season. The C. virosa habitats differed in community structure, water and substrate properties, and water regime. Although the total distribution ranges of the water and soil environments for C. virosa were wide and overlapped with the optimal environmental range of distribution of accompanying species, the optimal water level range for C. virosa was defined as $7{\pm}3.5$ cm. Water level was adjusted by substrate structure such as a mound of P. japonica and a floating mat comprised of accompanying species. A floating mat was an aid to maintain an optimal and stable water level in deep or fluctuating water and to prevent strong competition with prolific macrophytes. The GS sampling site, which had floating mats, could be a good model for C. virosa conservation in a warm temperate region, whereas the PC sampling sites, which experienced a water shortage in spring, provided a clue about the decline in C. virosa population size.

A study of Sedimentation Processes of Saemangeum Reclamation( I ) - A study of Sedimentation Processes before Saemangeum Reclamation - (새만금간척 퇴적과정에 관한 연구( I ) -새만금간척 시행 전을 중심으로-)

  • Shin, Moon-Seup
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.62-74
    • /
    • 2002
  • The purpose of this study is to find the variation of sedimentation patterns before Saemangeum reclamation. Residual flow before Saemangeum reclamation was calculated diagnostically from the observed water temperature and salinity data in May 1992 by the Marine Development Institute of Kunsan National University and wind data which were obtained from spring 1969 through winter 1977 by the Gunsan Meteorological Observatory. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-Lagrange method. Calculated sedimentation patterns of riverine materials are highly similar to the observed ones. When suspended sediments with the size of soil grain of 60 ${\mu}m$ are injected from the Mangyeong River, their dispersion range of sediment is about 25km for 24 hours after the injection, while about 35km for 72 hours after the injection. When suspended sediments with the size of soil grain of 200 ${\mu}m$ are injected, their dispersion range of sediment is about 18km for 24 hours after the injection, while about 21km for 72 hours after the injection.

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Global Warming Effects on the Cambial Growth of Larix leptolepis in Central Korea : Predictions from Simulation Modeling (지구온난화에 따른 중부 한국 낙엽송의 형성층 생장 예측: 시뮬레이션 모델링)

  • Won-Kyu Park;Eugene Vaganov;Maria Arbatskaya;Jeong-Wook Seo;Je-Su Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • A simulation model was used to examine the effects of climate variation on the tree-ring structure of Larix leptolepis trees growing at a plantation plot in Worak National Park in central Korea. The model uses mathematical equations to simulate processes affecting cell(tracheid) size variations for individual rings using daily precipitation and temperature measurements. Limiting conditions are estimated from temperature, day length and a calculated water balance. The results indicate that the seasonal growth is mostly limited by the soil moisture content and precipitation income during April and May. The April-May temperature also inversely influences the growth by increasing water losses from soil. The global climate-change scenario which includes regional warming(increasing temperature in spring-summer periods) appears to decrease the duration of optimal growths. Consequently, the model estimated that Larix leptolepis would lose the total production of xylem by 25%.

  • PDF

Source Identification of Fine Particle($PM_{2.5}$) in Chongju Using a Chemical Mass Balance Model (수용모델을 이용한 청주시 미세입자($PM_{2.5}$)의 기여도 추정)

  • 강병욱;이학성;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.477-485
    • /
    • 2000
  • The data set was collected on fifty-eight different days with a 24-h sampling period from October 27, 1995 through August 25, 1996. From the chemical mass balance (CMB) analysis of $PM_{2.5}$ in the Chongju area, the contributions from soil, gasoline, diesel, light and heavy oil combustion were 2.6%, 15.4%, 9.0%, 28.8% and 1.5%, respectively. Residual $NO_{3}^{-}$), residual $SO_{4}^{2-}$ and residual OC, possibly formed in the atmosphere. represented additional 8.0, 10.2, and 1.6% of the $PM_{2.5}$, respectively. Other unidentified sources constituted the remaining 22.9%. From the CMB analysis, the $PM_{2.5}$ source contribution for fall, winter, spring and summer were 92, 76.8, 77.5 and 59.2%, respectively.

  • PDF