• Title/Summary/Keyword: Soil slope analysis

Search Result 897, Processing Time 0.025 seconds

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence (산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구)

  • Woo, Choong-Shik;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

Characteristics Analysis of Debris Flow Disaster in Korean National Parks (국립공원 지역에 있어서 토석류 재해의 특성 분석)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.52-64
    • /
    • 2010
  • This study was carried out to analyze the occurrence characteristics and the influence of forest environment factors on the debris flow of 3 national parks in korea. The results obtained from this study were summarized as follows; The total number of debris flow occurrence was 125 areas. The average length of the debris flow scar was 144m, average width was 20m. And the average area and sediment were $2,854m^2$ and $3,959m^3$ respectively. The factors influencing the debris flow were highly occurred in Metamorphic rock, mixed forest type. And also, slope gradient was $30{\sim}35^{\circ}$, aspect was NE, altitude was over 1,000m, vertical and cross slope was concave (凹), soil depth was below 15cm, stream order was 0 order. The variables of cross slope (complex), deciduous tree, soil depth (over 46cm), cross slope (concave), mixed forest type and altitude (801~1200m) in correlation analysis were significant at 1 % level. The landslide of high mountain area highly tend to change the debris flow in stream bed of torrent. The debris flow in national parks mainly occurred in high mountain area with long ridge and steep slope.

Reliability Analysis of Slope Stability with Sampling Related Uncertainty (통계오차를 고려한 사면안정 신뢰성 해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.51-59
    • /
    • 2007
  • A reliability-based approach that can systematically model various sources of uncertainty is presented in the context of slope stability. Expressions for characterization of soil properties are developed in order to incorporate sampling errors, spatial variability and its effect of spatial averaging. Reliability analyses of slope stability with different statistical representations of soil properties show that the incorporation of sampling error, spatial correlation, and conditional simulation leads to significantly lower probability of failure than that obtained by using simple random variable approach. The results strongly suggest that the spatial variability and sampling error have to be properly incorporated in slope stability analysis.

A change of soil properties and forest vegetation present in burned areas in Geyjoksan, Daejeon metropolitan city (대전광역시 계족산 산화지의 토양 변화와 식생 현황)

  • Lee, Hang-Goo;Park, Gwan-Soo;Lee, Sang-Jin;Kim, Kil-Nam;Park, Beom-Hwan;Ko, Young-Woong;Yoon, Jun-Young;Kim, Hyoun-Sook;Lee, Sang-Hyuk;Kang, Kil-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • This study was conducted to investigate changes on burned areas after a forest fire in Geyjoksan which occurred in April 2000. Both soil physicochemical properties and vegetation present were analyzed in burned and unburned sites of pinus densiflora according to two slope aspects(south and north-facing slopes). The results of the analysis are as follows. The appearance species of vegetation were 21, 15 and 18 for burned site, burned site-1 and burned site-2 of pinus densiflora community respectively, indicating that the occurrence of forest fire and slope aspects affect vegetation appearance. The pH values at 0~10cm soil depth of unburned and burned sites of pinus densiflora community were 5.04 and 5.12 respectively with no significant difference between them. Mean organic matter, total nitrogen and available P also had no significant difference. This results indicate that the forest recover its former pH, total nitrogen, mean organic matter and available P over time after a forest fire. North-facing slope had relatively higher soil water content thus implying that its pH values of soil lower than south-facing slope. On the other hand, south-facing slope had high organic matter and available P content of soil as compared to north-facing slope. With south facing slope having high water contents, humus was accumulated due to slow organic matter decomposition. The pH values also decreased due to organic acids from humus. However, we observed that organic matter and P concentration in soil increased.

A Comparative and Parametric Study of Slope Stability Using a Probability-based Method in Railway Slope (철도 사면에서 확률론적 기법을 이용한 사면안정성 매개변수 비교연구)

  • Choi, Chan-Yong;Kim, Ju-Yong;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, it was carried out reliability analysis and slope stability analysis in a standard cross-sectional embankment on high speed railway. It was confirmed that changing tendency of safety factor with various parameter of each soil materials properties and trends of the probability of failure according to the reliability index. The results have shown that a safety factor were relatively large affected an cohesions and internal friction angle of soil compared to the unit weight of soil. Also, most of the standard cross-sectional embankment in high speed railway was generally evaluated the level of below average (below average) by the reliability analysis according to criterion in US. Army but the 12m height of dry embankment case was shown bad condition as Poor.

Reinforcing Effect of a Soil Nailing on Plane Failure of a Slope by Comparing Finite Difference Analysis with Limit Equilibrium Analysis (유한차분해석과 한계평형해석의 비교를 통한 평면파괴 사면 쏘일네일링 보강효과 연구)

  • You, Kwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.5-15
    • /
    • 2014
  • It is very important to design and construct slopes safely because damage cases are increasing due to slope failure. Recently, Limit Equilibrium Method (LEM) based programs are commonly used for slope designs. Though LEM can give factors of safety through simple calculation, it has a disadvantage that the sliding surface should be assumed in advance. On the other hand, the use of Finite Difference Method (FDM) is increasing since the factor of safety can be easily estimated by using shear strength reduction technique. Therefore the purpose of this study is to present a reasonable slope design methodology by comparing the two commonly used analysis approaches; LEM and FDM. To this end, the reinforcement effects of the two methods were compared in terms of the support pattern of soil nailing reinforced in the section where plane failure is anticipated. As a result, the reinforcement effects by nail angle and nail spacing turned out to be equal. Also it was found that the factor of safety increased in LEM, but not changed in FDM when the nail length increased.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.