• Title/Summary/Keyword: Soil security

Search Result 101, Processing Time 0.024 seconds

Paradigm Shift in Policy of Soil Environment Conservation in Korea (우리나라 토양환경보전 정책의 패러다임 전환)

  • Park, Yong-Ha;Yang, JaeE
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.10-26
    • /
    • 2018
  • This paper reviews the soil conservation policies (SCP) in the global community and suggests the improved options in SCP in Korea. Soil Environment Conservation Act in Korea states soil is a valuable natural resource and it's value should be enhanced to provide the benefits that soil ecosystem can offer to people. However, SCP in Korea limits its application to not only the scope of soil environment but also the issues on soil pollution. The SCPs in the advanced countries have shifted their scopes from soil environment to soil ecosystem, put emphasis on the conservation of soil health rather than soil quality, and set the goals to optimize the soil ecosystem services to people while minimizing the soil threats. In this context, the soil security initiative was recently proposed to accomplish this goal while employing the nexus concept to bridge the soil ecosystem services with water, atmosphere, climate and biodiversity. Therefore, the key policies in soil conservation in Korea should expand the scope from soil environment to soil ecosystem, focus on soil health management, and develop the holistic governance among diverse stakeholder to maximize the soil ecosystem services. Soil ecosystem should be secured by national soil policies for human health.

Obliquely incident earthquake for soil-structure interaction in layered half space

  • Zhao, Mi;Gao, Zhidong;Wang, Litao;Du, Xiuli;Huang, Jingqi;Li, Yang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.573-588
    • /
    • 2017
  • The earthquake input is required when the soil-structure interaction (SSI) analysis is performed by the direct finite element method. In this paper, the earthquake is considered as the obliquely incident plane body wave arising from the truncated linearly elastic layered half space. An earthquake input method is developed for the time-domain three-dimensional SSI analysis. It consists of a new site response analysis method for free field and the viscous-spring artificial boundary condition for scattered field. The proposed earthquake input method can be implemented in the process of building finite element model of commercial software. It can result in the highly accurate solution by using a relatively small SSI model. The initial condition is considered for the nonlinear SSI analysis. The Daikai subway station is analyzed as an example. The effectiveness of the proposed earthquake input method is verified. The effect of the obliquely incident earthquake is studied.

Designing a Remote Electronic Irrigation and Soil Fertility Managing System Using Mobile and Soil Moisture Measuring Sensor

  • Asim Seedahmed Ali, Osman;Eman Galaleldin Ahmed, Kalil
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.71-78
    • /
    • 2022
  • Electronic measuring devices have an important role in agricultural projects and in various fields. Electronic measuring devices play a vital role in controlling and saving soil information. They are designed to measure the temperature, acidity and moisture of the soil. In this paper, a new methodology to manage irrigation and soil fertility using an electronic system is proposed. This is designed to operate the electronic irrigation and adds inorganic fertilizers automatically. This paper also explains the concept of remote management and control of agricultural projects using electronic soil measurement devices. The proposed methodology is aimed at managing the electronic irrigation process, reading the moisture percentage, elements of soil and controlling the addition of inorganic fertilizers. The system also helps in sending alert messages to the user when an error occurs in measuring the percentage of soil moisture specified for crop and a warning message when change happens to the fertility of soil as many workers find difficulty in daily checking of soil and operating agricultural machines such as irrigation machine and soil fertilizing machine, especially in large projects.

IoT based Electronic Irrigation and Soil Fertility Managing System

  • Mohammed Ateeq Alanezi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.146-150
    • /
    • 2023
  • In areas where water is scarce, water management is critical. This has an impact on agriculture, as a significant amount of water is used for that purpose. Electronic measurement equipment are essential for regulating and storing soil data. As a result, research has been conducted to manage water usage in the irrigation process. Many equipment for managing soil fertility systems are extremely expensive, making this type of system unaffordable for small farmers. These soil fertility control systems are simple to implement because to recent improvements in IoT technology. The goal of this project is to develop a new methodology for smart irrigation systems. The parameters required to maintain water amount and quality, soil properties, and weather conditions are determined by this IoT-based Smart irrigation System. The system also assists in sending warning signals to the consumer when an error occurs in determining the percentage of moisture in the soil specified for the crop, as well as an alert message when the fertility of the soil changes, since many workers, particularly in big projects, find it extremely difficult to check the soil on a daily basis and operate agricultural devices such as sprinkler and soil fertilizing devices.

Analysis of GPR Exploration Limit of Open-Cut Type Excavation (개착식 굴착현장의 GPR 탐사한계 분석기법 연구)

  • Han, Yushik;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Accurate exploration of the risk factors of the ground subsidence is needed to predict and evaluate the subsidence of the surrounding ground due to the excavation of the ground. In this study, we analyzed the distribution of soil relaxation area by analyzing the behavior around the ground excavation site and simulated the GPR exploration under various conditions. As a result, Although there are some differences according to the water content, distribution of the strata and the distribution of the relaxation region were confirmed in the unsaturated soil, and it was found that there was a difficulty in the GPR exploration in the saturated soil.

Dynamic Responses of a Whole Bridge System under Earthquakes including the Effect of Foundation nearby Soil-layers (기초부 주변토체의 영향을 포함한 지진하중을 받는 교량의 통합된 동적거동분석)

  • Mha, Ho-Seong;Park, lnn-Joon;Park, Byung Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • In this study, a new procedure (Unified Dynamic Analysis Method) to evaluate the dynamic responses a bridge under earthquakes is proposed, which is not only considering the bridge motions but also the soil layer motions nearby the bridge footing in order to include the soil-structure interactions. lt is found that the dynamic responses of the whole bridge systems can be properly evaluate from using the proposed UDAM. The properties of the soil layers where the bridge is located can be included into the seismic analysis, and the multi-seismic excitations can also be considered easily.

  • PDF

A Study on Risk Influence Factors of Ground Subsidence through Soil Investigation Analysis (지반조사 분석을 통한 지반함몰 위험영향인자 연구)

  • Joung, Ho Young;Lee, Gil Hwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.43-46
    • /
    • 2017
  • Recently, the development of underground space is being actively carried out in the urban area by saturation, and the excavation works are mainly carried out by various excavation methods by the structures adjacent to the ground and underground excavation. During such excavation work, ground subsidence accidents are occurring due to inattention construction, lack of construction technology, and leakage of ground water. For the prevention of ground subsidence we studied the method of risk influence factors by soil investigation. Analysis of 75 sites soil investigation by U.S.C.S (Unified Soil Classification System), construction method, depth of excavation and we studied the risk influence factors with ground subsidence.

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

A Study on Estimation of the Collapse Pattern of Road Sink Using Distinct Element Method (개별요소법을 이용한 도로함몰 붕괴양상 추정에 관한 연구)

  • Ham, Myoung Soo;Park, Seon Woo;Lee, Hyun Dong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2019
  • The road sinks in the sewer line or subway section are affected by the ground characteristics. Therefore, it is necessary to accurately identify the relationship between the soil properties and the ground motion in the area where cavities occurred in order to establish a countermeasure against the road sink. In this paper, simulation was performed by using EDEM program, which is one of the Discrete Element Method programs, for sandy soil and clayey soil, which are most common in alluvial deposits, with different locations and sizes of cavities in the underground. As a result, it was found that the sink size occurred more in the sandy soil than in the cohesive soil. Deeper and larger cavity is more likely to occur the road sink In the sand soil model while road sink in the clay model is easy to occur when the cavity is more shallower.