• Title/Summary/Keyword: Soil sampling

Search Result 575, Processing Time 0.026 seconds

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.

Distribution of Heterotrophic Bacterial Flora in Soil on the King George Island (Antarctica) and Their Enzyme Activities (남극 King Geroge Island 토양의 종속영양 세균 분포상과 효소 활성도)

  • 김상진;이승복
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.199-203
    • /
    • 1990
  • To study distribution of bacterial flora and their biochemical characteristics in the Antarctic soilecosystem, these experiments were performed during the austral summer(Feb., 1989) on the King George Island, Antarctica. The numbers of heterotrophic bacterial colonies and extracellular enzyme actibities were estimated from the Antarctic terrestrial soils which were sampled from 17 different locations near Sejong station (Korea) and Teniente Jubany station (Argentina) on the King George Island. The numbers of heterotrophic bacterial colonies were extremely variable with sampling sites and incubation temperatures. Arithmetric average numbers were $2.5\times 10^{4}$, $2.7\times 10^{7}$ , $6.9\times 10^{5}$ CFU/$cm^{3}$ soil at the incubation temperature of $37^{\circ}C$, $25^{\circ}C$ and $4^{\circ}C$, respectively. The activities of extracellular $\alpha$-glucosidase, $\beta$-glucosidase and N-acetyl-$\beta$-glucosaminidase were shown as similar mean percentage in the colonies obtained at different temperatures. Mean value of protease activities, however, was remarkably higher (92%) in the colonies grown at $4^{\circ}C$,.

  • PDF

Review of Analytical and Assessment Techniques of Terminal Electron Accepting Processes (TEAPs) for Site Characterization and Natural Attenuation in Contaminated Subsurface Environments (오염 지중환경 특성화와 자연저감평가를 위한 말단전자수용과정(TEAPs) 분석 및 평가기술 소개)

  • Song, Yun Sun;Kim, Han-Suk;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.1-15
    • /
    • 2020
  • Monitoring and assessing terminal electron accepting processes (TEAPs) are one of the most important steps to remediate contaminated sites via various in-situ techniques. TEAPs are a part of the microbial respiration reactions. Microorganisms gain energy from these reactions and reduces pollutants. Monitoring TEAPs enables us to predict degradability of contaminants and degradation rates. In many countries, TEAPs have been used for characterization of field sites and management of groundwater wells. For instance, US Environmental Protection Agency (EPA) provided strategies for groundwater quality and well management by applying TEAPs monitoring. Denmark has also constructed TEAPs map of local unit area to develop effective groundwater managing system, particularly to predict and assess nitrogen contamination. In case of Korea, although detailed soil survey and groundwater contamination assessment have been employed, site investigation guidelines using TEAPs have not been established yet. To better define TEAPs in subsurface environments, multiple indicators including ion concentrations, isotope compositions and contaminant degradation byproducts must be assessed. Furthermore, dissolved hydrogen concentrations are regarded as significant evidence of TEAPs occurring in subsurface environment. This review study introduces optimal sampling techniques of groundwater and dissolved hydrogen, and further discuss how to assess TEAPs in contaminated subsurface environments according to several contamination scenarios.

Estimating the unconfined compression strength of low plastic clayey soils using gene-expression programming

  • Muhammad Naqeeb Nawaz;Song-Hun Chong;Muhammad Muneeb Nawaz;Safeer Haider;Waqas Hassan;Jin-Seop Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The unconfined compression strength (UCS) of soils is commonly used either before or during the construction of geo-structures. In the pre-design stage, UCS as a mechanical property is obtained through a laboratory test that requires cumbersome procedures and high costs from in-situ sampling and sample preparation. As an alternative way, the empirical model established from limited testing cases is used to economically estimate the UCS. However, many parameters affecting the 1D soil compression response hinder employing the traditional statistical analysis. In this study, gene expression programming (GEP) is adopted to develop a prediction model of UCS with common affecting soil properties. A total of 79 undisturbed soil samples are collected, of which 54 samples are utilized for the generation of a predictive model and 25 samples are used to validate the proposed model. Experimental studies are conducted to measure the unconfined compression strength and basic soil index properties. A performance assessment of the prediction model is carried out using statistical checks including the correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), the relatively squared error (RSE), and external criteria checks. The prediction model has achieved excellent accuracy with values of R, RMSE, MAE, and RSE of 0.98, 10.01, 7.94, and 0.03, respectively for the training data and 0.92, 19.82, 14.56, and 0.15, respectively for the testing data. From the sensitivity analysis and parametric study, the liquid limit and fine content are found to be the most sensitive parameters whereas the sand content is the least critical parameter.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.

Terrestrial pest gastropod diversity and spatiotemporal variations in highland agricultural lands of Sri Lanka

  • Dinelka Thilakarathne;Nadeela Hirimuthugoda;Kithsiri Ranawana;Shalika Kumburegama
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.60-73
    • /
    • 2024
  • Background: The available information on terrestrial pest gastropods and their impact on the environment worldwide is scarce and outdated. The present study aimed to address this gap by conducting the first comprehensive survey of pest gastropods in the Nuwara Eliya District, an important vegetable growing area in the highlands of Sri Lanka. Eighty agricultural lands were surveyed over two years by establishing ten 1 m2 sampling plots per crop type in each agricultural land. Geo-coordinates, air temperature, elevation, relative humidity, daily rainfall, soil pH, species richness and abundance were recorded for rainy and non-rainy periods. The relationship between species composition and environmental variables was analyzed using multi-regression models and distribution maps. Results: Out of the 14 species recorded in agricultural lands, nine were identified as exotic pest species. Species abundance (t = 4.69, p < 0.05) and diversity was higher in the rainy period and the dominant species during this period were Bradybaena similaris (t = 2.69, p < 0.05) and Deroceras reticulatum (t = 2. 46, p < 0.05). Eggs and estivating adults were found in soil and under decaying organic matter during the non-rainy period. The exotic species showed broader preferences for the measured environmental factors and showed a wider range in distribution compared to the native species. Variation in pest gastropod composition was significantly accounted for by elevation, relative humidity, soil pH and daily rainfall. Additionally, the species richness and abundance varied across locations due to the combined effects of elevation, crop type and stage, and field type. Conclusions: The study emphasizes the importance of understanding the biology and ecology of gastropod pests to develop effective management strategies. By considering the influence of environmental factors and implementing appropriate soil management techniques, such as targeting specific habitats and crop stages, it is possible to mitigate pest populations and minimize their impact on agricultural lands. Overall, this research contributes valuable insights into the dynamics and interactions of terrestrial gastropods in agricultural ecosystems, supporting sustainable pest management practices.

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

Evaluation of the Sediments Contamination in the Lake Sihwa (시화호 퇴적토의 오염도 평가 및 효과적 관리방안)

  • Kim, Seung-Jin;Bae, Woo-Keun;Shin, Kyung-Hoon;Choi, Dong-Ho;Baek, Seung-Chun;Yoon, Seung-Joon;Choi, Hyung-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.16-24
    • /
    • 2007
  • An investigation on the polluted sediments in the Lake Sihwa and the benthos that inhabited on the sediments was conducted. Cost effective remediation alternatives were derived form the results of the investigation. The sediment samples taken from four sampling points out of thirteen showed relatively high heavy metal (particularly copper) concentrations which exceeded the Effects Range Low (ERL) of the National Oceanic and Atmospheric Administration, USA. The four sampling points were located in front of industrial complexes. Although the heavy metals appeared to have affected the growth of the benthos, the concentration of it did not exceed the criteria of dredging that were developed by Netherlands or the State of Washington, USA. However, contamination by organic matters and sulfur compounds was severe, which exceeded the criteria of dredging that were established in Japan. The sediments taken from the four sampling points which were contaminated with heavy metals showed higher organic matter content in general. The organic matters in the sediments depleted oxygen in summer, which appeared to be fatal to the benthos. A comprehensive analysis on the sediments, benthos, and other environmental impact from the contaminated sediments drew a conclusion that the benthonic environment of the Lake Sihwa needed a stepwise remediation, giving a particular emphasis on the clean up of the sediments upstram of the Lake which could cause odor problems to the nearby residential area.

Geostatistical Interpretation of Cs-137 and K-40 Result of the Lithosphere in the Vicinity of Youngkwang Nuclear Power Plant (지구통계학적 방법에 의한 영광원전주변 토층내 Cs-137 및 K-40 측정 결과의 해석)

  • 김경웅;이재석;문승현;박철승;고일원;고은정;조병옥;정철영;전수열
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.545-552
    • /
    • 2002
  • In order to investigate the influence of nuclear power plant operation on its nearby environment, soil, stream and marine sediment samples were collected in the vicinity of the Youngkwang Nuclear Power Plant in Korea, and analyzed for artificial and natural radionuclide radioactivity. From the analytical result, Cs-137 was detected in most soil samples. but it may have been derived fiom past nuclear weapon tests because Cs-134 having short half-live was not detected. The radioactivities of Cs-137 in the sediment samples were also detected which are within the normal range in the sediments based upon the published literature between 1997 and 1999. For the quality control of radioactivity analysis of environmental samples, sets of marine sediments in the Gamami area were analyzed using two HPGe Gamma-ray Spectroscopes (30% and 45%) according to the geostatistical sampling strategy, and Cs-137 and K-40 results were interpreted by analysis of variance (ANOVA). In the two-way ANOVA, variances derived from the geochemical variation were significant, but errors from sampling and analytical procedures are negligible. In conclusion. all the radioanalytical procedures of this study including sampling are validated to be acceptable.