• Title/Summary/Keyword: Soil salt

Search Result 32, Processing Time 0.103 seconds

Physiological Characteristics and Death Rate of Planted Trees in Reclaimed Seaside Areas (임해매립지 조경수목의 생리적 특성과 식재수목의 고사율)

  • 박현수;이상석;이상철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • The purpose of this paper is to analyze the correlation between Death Rate of Trees (DRT) and the Physiological Characteristics of Trees(PCT) in POSCO Gwangyang works, which is a reclaimed area. To analyze the DRT, 15 species of deciduous trees were selected, for example Ulmus davidiana var., Zelkova serrata, Melia azedarach var. etc. Though there were numerous factors to affect the growing of trees, 5 PCT were considered to be main factors, soil salt tolerance, wind salt tolerance, water needs, transplanting difficulty, and nutrient needs. According to two kinds of soil-base: mound and pot area, we tested the relationship between 5 PCT and DRT by use of t-test and multiple regression analysis. The results are as follows. 1. The DRT of Acer palmatum, Cornus kousa, Magnolia kobus, Liriodendron tulipifera, and Albizzia julibrissin were high by more than 20%. On the other hand, Chionanthus retusa, Ulmus davidiana var. japonica Celtis sinensis, and Lagerstroemia indica were low by less than 10% in the DRT and are considered to be species suitable for planting in reclaimed areas. 2. The DRT of trees in pot areas was meaningfully higher than in mound areas; for this reason the mound technique is desirable as a soil-base for planting in reclaimed areas. 3. In the pot area, the independent variables, in the order of soil salt tolerance, wind salt tolerance, transplanting difficulty, had an effect on the DRT more significantly than in mount area. On the other hand, wind salt tolerance and soil salt tolerance affected the DRT in mount areas. This means that soil salt tolerance, wind salt tolerance, and transplanting difficulty have to be considered as significant factors to the DRT. Although the researchers tried to interpret how the PCT affected the DRT in order to analyze the relationship between the two in reclaimed areas, it was neglected at an experimental level. Therefore, future research should work on this aspect in detail.

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands (간척지 밭작물의 관개용수량 추정을 위한 토양염분예측모형 개발)

  • 손재권;구자웅;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.96-110
    • /
    • 1994
  • The purpose of this study is to develop soil salt prediction model for the estimation of irrigation water requirements for dry field crops in reclaimed tidelands. The simulation model based on water balance equation, salt balance equation, and salt storage equation was developed for daily prediction of sa]t concentration in root zone. The data obtained from field measurement during the growing period of tomato were used to evaluate the applicability of this model. The results of this study are summarized as follows: 1.The optimum irrigation point which maximizes the crop yield in reclaimed tidelands of silt loam soil while maintaining the salt concentration within the tolerance level, ws found to be pF 1.6, and total irrigation requirement after transplanting was 602mm(6.7 mm/day)for tomato. 2.When the irrigation point was pF 1.6, the deviation between predicted and measured salt concentration was less than 4 % at the significance level of 1 7% 3.Since the deviations between predicted and measured values data decrease as the amount of irrigation water increases, the proposed model appear to be more suitable for use in reclaimed tidelands. 4.The amount of irrigation water estimated by the simulation model was 7.2mm/day in the average for cultivating tomato at the optimum irrigation point of pF 1.6.The simulation model proposed in this study can be generalized by applying it to other crops. This, model, also, could be further improved and extended to estimate desalinization effects in reclaimed tidelands by including meteorological effect, capillary phenomenon, and infiltration.

  • PDF

Settling Mode of the Dredged Soil (준설토의 침강형태에 관한 연구)

  • 윤상묵;장병욱;차경섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.63-73
    • /
    • 2003
  • The settling of the dredged soil may vary with mineral composition, grain size distribution, initial water content and salt concentration of suspension of the site. A series of settling column test was performed to investigate the behaviour of solid suspension material from dredging and reclamation. Settling mode was divided into four types from the observation of interface and settling curves of clay minerals and marine clay samples, and the relationship charts of salt concentration and the initial water content were established to use in the dredging operation with any salt concentration. The critical initial water content which was defined as a threshold of zone settling and the consolidation settling was varied with salt concentration of water and was proportional to the plasticity of soil in sea water.

Desalinization of Flooding Periods and Growth of Whole Crop Barley as Early Exposure Area in 'Saemangeum' Newly Reclaimed Land (새만금간척지 조기노출지역의 담수기간별 제염과 청보리 생육)

  • Choi, Weon-Young;Song, Tae-Hwa;Kim, Sun;Lee, Jang-Hee;Jeong, Jae-Hyeok;Kim, Si-Ju;Lee, Kyeong-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • This study was conducted to investigate upland crop at reclaimed sand land 'Saemangeum' for early desalination purpose and to investigate the growth and yield of whole crop barley, which was acceded after summer crop of corn and rice. Seedling establishment of whole crop barley were 216 seedlings/$m^2$(25%) for non-flooding, 43% for 1 month and 58% for 2, 3 month flooding. And it was 60% in rice cultivation. Soil salt concentration was 0.5% in non-flooding treatment, however flooding treatments decreased to 0.2% or less. In general soil salt concentration increased until the middle stage of growing, then became to similar level as the seeding time. Plant height, stem length and number of tiller were increased with flooding treatment. Whole crop barley yield was significantly reduced in non-flooding treatment but rapidly increased by flooding treatment. Yielding at 3 months increased by 504% compared to non-flooding, and rice cultivation was also increased by 536%. Protein and fiber content was low in 1 month flooding treatment, 3 months flooding and rice cultivation showed the similar results in terms of feed value. For desalination purpose in reclaimed land, 3 months flooding treatments of rice cultivation could result in higher yielding for upland crop, such as whole crop barley.

Growth of Dendranthema zawadskii in Chloride-containing De-icing Salt Areas Upon Treatment With Soil Amendments (제설제 피해지에서 토양개량제 처리에 따른 구절초의 생육특성 비교)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.235-243
    • /
    • 2021
  • This study was conducted to investigate the growth of Dendranthema zawadskii in damaged soils when they are treated with improvement agents. The treatments consisted of a control (unamended field soil) and the application of a loess ball of 1 cm to the field soil. According to the degree of damage the de-icing agent had caused, the soils were divided into 3 areas (based on the yellowing of Pinus densiflora for. multicaulis in soil surveys): H (high saline), M (medium saline), and L (low saline). A total of six treatments were performed: D. zawadskiia plant without soil amendment (H; high saline soil, M; medium saline soil, L; low saline soil), and a D. zawadskiia plant with loess ball on the soil surface (H.L; high saline soil with loess ball, M.L; medium saline soil with loess ball, L.L; low saline soil with loess ball). The results showed that D. zawadskiia growth went from highest to lowest in the order: M.L > L.L > M > L > H.L > H. Plant growth results showed that soils treated with soil amendments (loess ball) were better for D. zawadskii growth than untreated soils.

Chronological Role of the Soil Research in Korea - Analysis of Research Reports on Soil from 1906 to 2012 -

  • Yun, Sun-Gang;Kwon, Soon-Ik;Hong, Seung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Park, Chan-Won;Jung, Goo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.303-307
    • /
    • 2013
  • Research reports on soil during the years from 1906 to 2012 have been analyzed to understand the role and pattern of soil research in agriculture. The number of research reports in relation with the key word of soils were 2,211 cases and classified in accordance with the criteria of research area, research subject, and research place of report papers. During the 40 years from 1906 to 1946, research work on soil chemistry was reached 62%, highest in the research area. In the case of research subject, research reports on soil fertility and soil nutrients was highest as 42.2%, and the next subject on soil salt and desalinization was about 19.5%. Research places were in the order of paddy as 34.1%, upland as 23.7%, and reclaimed soil as 22.5%. From 1953 to 2012 during 60 years, in the research area report papers were mainly concentrated on chemistry area as 32% and the next was physics as 26%, and environment as 12%. In the case of research subject during the same period, nutrient management report was reached 21.1%, and soil improvement on chemical and physical properties for optimum crop growth was 11.9%. Soil survey and data base establishment report was 8.6%. Research place were in the order of upland as 34.9%, paddy as 25.7%, and vinyl house as 12.5%, which showed reversed pattern compared to that of before 40 years.

Adaptation of Phragmites communis Trin. Population to Soil Salt Contents of Habitas (생육지의 토양염분농도에 대한 갈대 ( Phragmites communis Trin. ) 개체군의 적응)

  • Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.63-74
    • /
    • 1993
  • The ecotypic variation of Phragmites communis Trin. was studied from Aug. 1989 to March 1992 in three populations of salt marsh, estuary and fresh water areas of the western coastal regions in Korea. The length growth and aboveground total dry weight of Phragmites communis Trin. From three habitates were measured monthly and the seeds from them collected. Chlorophyll contents, bud number and width of Phragmites communis Trin. populations after their seeds were sown in seedbeds, and the growth of seedlings according to salt contents were also determined. The results lare summarized as follows: The height and basal diameter of shoot, leaf length and width, and total dry weight of Phragmites communis Trin. were very different from each other according to their natural habitats. The bud number of seeds was increased as sample sites moved from estuary to fresh water areas and salt marsh. The but the bud diameter turned out to be in reverse proportion to the bud number. The chlorophyll content of the population from fresh water was $8.6901{\mu}g/ml$, whereas that from estuary and salt marsh was $9.61801{\mu}g/ml$ and $10.3160{\mu}g/ml$, respectively. The average length growth and total dry weight of seedlings grown at different salt contents were compared. Those of fresh water area decreased at salt contents lower than 0.5% in culture solution and those of estuary at higher than 0.5%, but the population of salt marsh was shown to be capable of sustaining itself at 1.0%. All of these results suggested that the populations of Phragmites communis Trin. in the western coastal regions of Korea have undergone ecotypic variations: fresh water type, estuary type and salt marsh type.

  • PDF

Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation

  • Kim, Lee-Yul;Kim, Ki-In;Kang, Seong Soo;Kim, Jung-Ho;Jung, Kang-Ho;Hong, Soon-Dal;Lee, Won-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Zeolite may help crop growth, yield increase, and salt removal. Field experiment under greenhouse cultivation was conducted to study the effect of zeolite application on growth and yield of Chinese cabbage (Brassica campestris L.) and soil. Soil was classified as Gyuam series (coarse silty, mixed, nonacid, mesic family of Aquic Fluvaquentic Eutrudepts). Six zeolite rates were 0, 3, 5, 10, 20 and $40Mg\;ha^{-1}$. Experimental design was a completely randomized design. Chinese cabbage was grown three times consecutively. Established plant number of plant and yield as fresh weight (F.W.) were measured and soil samples were taken before and after harvesting. Chinese cabbage yield was $76.9Mg\;ha^{-1}$ at a rate of $20Mg\;zeolite\;ha^{-1}$, $54.3Mg\;ha^{-1}$ at a rate of $5Mg\;zeolite\;ha^{-1}$, and $51.3Mg\;ha^{-1}$ at control (no zeolite), respectively. Second order regression analysis using zeolite rate and yield showed that optimum zeolite application rate was between 24 and $26Mg\;ha^{-1}$. The regression equation explained about 88% of the yield variability. The electrical conductivity (EC) decreased from 3.2 to $1.0dS\;m^{-1}$ for all treatments so that salt accumulation was not a concern. Based on the results, we recommend that optimum zeolite application rate is between 20 and $24Mg\;ha^{-1}$ for Chinese cabbage under greenhouse cultivation.