• Title/Summary/Keyword: Soil resistivity

Search Result 259, Processing Time 0.024 seconds

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Application of Electromagnetic and Electrical Survey for Soil Contamination in Land-Fill Area (쓰레기 매립장의 토양오염 조사를 위한 전자탐사 및 전기탐사)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.87-91
    • /
    • 1998
  • Geophysical survey techniques, such as electromagnetic(EM), GPR, and electrical method, have been tested in the landfill area to evaluate the applicability of these methods to soil contamination measurement. The EM method has proven to be excellent on mapping the areal distribution of contaminants and the migration path for leachate. Since the field operation of EM technique is simple as well as fast, we think the EM method must be the first choice for these purposes. Electrical survey techniques have proven to be very effective on mapping sectional distribution of contaminants. Generally, the GPR method is very good on high resolution survey of shallow depth, and field data acquisition is simple, too. But the resistivity method gives better information on deep area, for example, deeper than the depth of 20 m.

  • PDF

Case Study on the Investigation of Leachate Contamination from Waste Landfill Using Electromagnetic and Magnetic Methods (쓰레기 매립장 주변의 침출수 오염조사 사례: 전자탐사 및 자력탐사의 적용)

  • Son Jeong-Sul;Kim Jung-Ho;Yi Myeong-Jong;Ko Kyung-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • In this study, we offered the results of geophysical and geochemical survey on the municipal waste disposal area to delineate the size and extent of leachate contamination. Preliminary to intensive geochemical investigation, we performed two geophysical methods to characterize the survey area. Electromagnetic (EM) and magnetic method were used far site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contaminations and from magnetic anomalies we can find the boundary of landfill which is not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of geochemical method carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey.

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.

An Analysis of the Frequency-Dependent Resultant Ground Impedance of Vertical Ground Electrodes Installed in Parallel (병렬로 시공된 수직 접지전극의 합성접지임피던스의 주파수의존성 분석)

  • Lee, Bok-Hee;Cho, Sung-Chul;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • This paper deals with the experimental results of the frequency-dependent resultant ground impedance of vertical ground electrodes installed with a regular n-polygon. In order to propose an effective method of installing the vertically-driven multiple ground electrodes used to obtain the low ground impedance, the resultant ground impedance of ground electrodes installed with a regular n-polygon were measured as functions of the number of ground electrodes and the frequency of test currents and the results were discussed based on the potential interferences among ground electrodes. As a consequence, the effect of potential interference on the resultant ground impedance of vertical ground electrodes is frequency-dependent and it is significant in the low frequency of a few hundreds [Hz]. The resultant ground impedance of multiple vertical ground electrodes is not decreased in linearly proportion to the number of ground electrodes due to the overlapped potential interferences. Also the distributed-parameter circuit model considering the potential interference, the frequency-dependent relative permittivity and resistivity of soil was proposed. The simulated results of the frequency-dependent resultant ground impedance of multiple vertical ground electrodes are in good agreement with the measured data.

Conventional Grounding Impedance according to the Length and Soil Resistivity of the vertical grounding electrode (수직접지전극의 길이와 대지저항률에 따른 규약접지임피던스 분석)

  • Choi, Jong-Hyuk;Shin, Hee-Gyung;Lee, Bok-Hee;Kim, Tae-Ki;Ahn, Chang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1568-1569
    • /
    • 2011
  • 최근 기후변화로 인해 낙뢰의 발생빈도가 크게 증가하고 있으며 이에 따라 피뢰시스템의 중요성이 부각되고 있다. 피뢰시스템의 원활한 기능을 수행하기 위해 접지시스템의 성능이 보장되어야 하며, 접지전극은 뇌격전류를 안전하게 대지로 방류시켜야 한다. 본 논문에서는 피뢰시스템에서 가장 흔하게 사용되는 수직접지전극을 대상으로 서지전류가 인가되었을 때 접지전극이 묻힌 대지저항률, 접지전극의 길이, 서지 전류의 파두시간 등에 따른 규약접지임피던스를 측정하고 그 특성을 분석하였다. 그 결과 대지저항률이 높은 토양과 접지전극의 길이가 짧은 경우 접지임피던스가 감소하는 용량성 특성이 지배적으로 나타나며, 대지저항률이 작고 접지전극의 길이가 긴 경우 접지임피던스가 증가하는 유도성 특성이 지배적으로 나타났다. 따라서 피뢰시스템을 위한 접지시스템 설계 시 대지저항률 및 접지전극의 길이를 고려하여 유도성 특성을 최소화 할 수 있도록 설계해야 한다.

  • PDF

A Study on the Equivalent Circuit Modeling for Harmonics Analysis by Field Tests (현장시험에 의한 고조파 해석용 등가회로 모델링에 관한 연구)

  • 김경철;최종기;백승현;김종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.60-67
    • /
    • 2004
  • With the proliferation of nonlinear loads, high neutral harmonic currents in three-phase four-wire distribution system have been observed It has been also known that the ground impedance has an effect on the neutral currents of a system which operates with harmonics present. On-site measurements of harmonic currents and voltages, and the soil resistivity and ground resistance under case study system were made and the corresponding equivalent circuit for the harmonics analysis was developed This equivalent circuit model was simulated numerically and graphically through the use of MATLAB and CDEGS software packages, and adequate results were obtained.

Numerical Analysis of the Interference of the Buried Pipeline due to the Stray Current from the Parallel Electric Railway (전기철도와 평행한 매설배관에서 누설전류에 의한 간섭현상의 수치해석적 연구)

  • Jung, Chan-Oong;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • The stray current interference problem could induce the corrosion of near-by structure and rail itself. Many efforts has been concentrated on the reduction of the interference. In this work the influences of separation distance, soil resistivity, pipe coating resistance, leak resistance of rail were studied using the numerical analysis methods. These analysis could be used to estimate the sensitivity of each variables in the study of the mitigation method and their numerical analysis.

  • PDF

Technical Trends of Domestic and Overseas on Electro-physical Properties Measurement (전기물성 측정의 국내외 기술 동향)

  • Park, Sam-Gyu;Cho, Seong-Jun;Lee, Tae-Jong;Lee, Seong-Kon;Lee, Sang-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.285-290
    • /
    • 2007
  • Electrical and electromagnetic methods were widely applied to survey of civil engineering, environment site assessments and maintenance of underground structures in Korea. Electro-physical properties measurements of soil and rock are necessary in order to quantitatively estimate the ground from these survey results. A few geotechnical researcher groups have been simplified measurement system of the electro-physical properties, which was intermittently operating by the necessity. Recent strong concern about $CO_2$ underground storage and development of gas hydrate projects have urged many advanced countries. The electro-physical properties estimation of the deep object stratum is very importance for basic information of these research. So, advanced countries have a high-end measurement system with high temperature(200 degrees) and pressure(300 MPa), also they have been a lot of experience and know-how on the electro-physical properties measurement.

  • PDF

Evaluation of the potential reduction and energy dispersion caused by ionization phenomena at the submerged ground rod (수중에 잠긴 접지전극주변에서 이온화에 의한 전위저감 및 에너지 방출의 평가)

  • An, Sang-Duk;Choi, Jong-Hyuk;Park, Geon-Hun;Yang, Soon-Man;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • When high surge voltage invaded into the ground rod contacted with ground water, the ionization phenomena are happened in the water. Although some researchers have surveyed the ionization phenomena in soil, they have just analyzed the variation of the ground resistance. The most important role of the ground rod is to elect human beings from potential rise and to dissipate energy to the earth safely. In this wort we presented the method evaluating the potential reduction and energy dispersion. Also we analyzed theses factors as a function of charging voltages at the water resistivity of $50\;{\Omega}{\cdot}m$ using the Matlab Program. As a result the ground rod potential was reduced to 38 kV by ionization just below breakdown voltage. The energy more than half of the total injected energy was dispersed through the grounding electrode caused due to ionization.

  • PDF