Processing math: 100%
  • Title/Summary/Keyword: Soil related parameter

Search Result 69, Processing Time 0.027 seconds

Prediction of the Volumetric Water Content Using the Soil-Water Characteristic Curve on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 체적함수비의 예측)

  • Song, Chang-Seob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.39-48
    • /
    • 2004
  • The purpose of this paper was to confirm the application of the equation of the soil-water characteristic curve on an unsaturated soil. To this ends, a series of suction test was conducted on the selected 4 kinds of soil which is located in Korea, using the modified pressure extractor apparatus. And it was carried out to analyze the experimental parameters which can describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that the matric suction was varied according to the grain size distribution, amount of fine grain particle and void ratio. Also it was found that the residual volumetric water content was decreased with the void ratio, but the index related air entry value, the soil parameter related water content and the parameter with residual water content were increased with the void ratio. And the application of equation of the soil-water characteristic curve was confirmed for the various conditions and the various state by the comparison between the volumetric water content measured by the experiment and the predicted values.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Dry Density of Pocheon Granite Soil (포천 화강토의 건조단위중량에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성)

  • Cho, Won-Beom;Kim, Chan-Kee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, a series of the isotropic compression-expansion tests and the drained triaxial tests were performed on Pocheon granite soil with various the dry densities of 16.67kN/m3, 17.26kN/m3 and 17.65kN/m3. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters such as kur and n related to elastic behavior, m and η1 related to failure criterion, c and p related to hardening function and ψ2 and μ related to plastic potential show in a positive linear relationship with the dry density. Since the soil parameters h and representing yield function do not change much to relative density and also are closely related to failure criterion, they can be replaced by failure criterion. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Prediction of Settlement for the Highly Plastic and Silty Soft Ground Contained of the Organic Deposits (유기질층을 포함한 고소성 실트질 연약지반의 침하 예측)

  • Yoo, Nam-Jae;Kim, Kyum;Yoo, Chang-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.91-98
    • /
    • 2011
  • In this thesis, from the results of settlement measurement performed at the site where embankment earthwork was carried out on the ground consisting of highly plastic and silty soft soils interlayered with organic deposits, various methods of predicting the embankment settlement such as Hoshino's method, Asaoka's method, hyperbolic method, s method and Monden's method were used to investigate their applicability and the inverse method of finding the soil parameter related to consolidation was used to predict the consolidation behavior in the future. It was confirmed that reliable prediction of consolidation behavior under various conditions could be done to estimate soil parameter related to consolidation such as the consolidation index and consolidation coefficient by the inverse method of comparing the measured settlement with the predicted value by the settlement prediction methods.

  • PDF

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map (HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가)

  • Choi, Yun Seok;Jung, Young Hun;Kim, Joo Hun;Kim, Kyung-Tak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations (두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동)

  • Lee, Jong-Won;Ryu, Bong-Jo;Lee, Gyu-Seop;Kong, Yong-Sik;Oh, Bu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF

Grouping the Ginseng Field Soil Based on the Development of Root Rot of Ginseng Seedlings (유묘 뿌리썩음병 진전에 따른 이산재배 토양의 유별)

  • 박규진;박은우;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • Disease incidence (DI), pre-emergence damping-off (PDO), days until the first symptom appeared (DUS), disease progress curve (DPC), and area under disease progress curve (AUDPC) were investigated in vivo after sowing ginseng seeds in each of 37 ginseng-cultivated soils which were sampled from 4 regions in Korea. Non linear fitting parameters, A, B, K and M, were estimated from the Richards' function, one of the disease progress models, by using the DI at each day from the bioassay. Inter- and intra-relationships between disease variables and stand-missing rate (SMR) in fields were investigated by using the simple correlation analysis. Disease variables of the root rot were divided into two groups: variables related to disease incidence, e.g., DI, AUDPC and A parameter, and variables related to disease progress, e.g., B, K and M parameters. DI, AUDPC, and DUS had significant correlations with SMR in ginseng fields, and then it showed that the disease development in vivo corresponded with that in fields. Soil samples could be separated into 3 and 4 groups, respectively, on the basis of the principal component 1 (PC1) and the principal component 2 (PC2), which were derived from the principal component analysis (PCA) of Richards' parameters, A, B, K and M. PC1 accounted for B, K and M parameters, and PC2 accounted for A parameter.

  • PDF

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.