• Title/Summary/Keyword: Soil reinforcement

Search Result 563, Processing Time 0.025 seconds

Design and Construction for Mountain-Tunnel Under the Soil Area (산악터널 토사구간의 설계와 시공)

  • Moon, Du-Hyung;Moon, Hoon-Ki;Kang, In-Seop;Lee, Jae-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.845-862
    • /
    • 2009
  • Recently, Tunnel in soil has been designed frequently because Mountain Tunnel has been increased rapidly due to straight of horizontal curve and residents' complaints, tunnel portal has been planned at closed to surface for minimization of environmental damage. To excavate tunnel in soil, where displacement and crushing occur in tunnel face and crown because of unstable ground condition, appropriate reinforcement method needed. On this paper, through design and construction of the soil tunnel, consider application of reinforcement method, economical efficiency and stability.

  • PDF

Reinforcement of Soft Soil Subgrade for High-Speed Railroad Using Geocell (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 김진만;조삼덕;윤수호;정문경;김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.129-141
    • /
    • 1999
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell where it is used to reinforce soft subgrade for high-speed railroad. Efficacy of geocell was observed in increase in bearing capacity of subgrade and reduction of thickness of reinforced sub-ballast. Plate load tests were carried out at four different places with varying foundation soil strength as a function of number of geocell layer, type of filler material, thickness of cover soil, and the presence of non-woven geotextile. Dynamic load tests were performed in a laboratory. The test soil chamber consists of, from the bottom, 50 cm thick clayey soil, one layer of geocell filled with crushed stone, 10 cm thick crushed stone cover, reinforced sub-ballast of varying thickness, 35 cm thick ballast. This configuration was determined based on the results of numerical analysis and plate load tests. For each set of the dynamic load tests, loads were applied more than 80,000 times. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times compared to a crushed stone layer of the same thickness substituted for the geocell and cover soil layer. Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

  • PDF

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

Modified FHWA Design Method Considering Bending Stiffness of Soil Nail (휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안)

  • Kim, Nak-Kyung;Jung, Jung-Hee;Ju, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

A Study on the Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과 관한 연구)

  • Kim, Eun Ra;Iizuka, Atsushi;Kim, You-Seong;Park, Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.5-16
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced compacted soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, occurring from a confinement of the dilative deformation in compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working on the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure for input parameters needed in the elasto-plastic modeling are presented. And to describe the irreversible deformation characteristics of compacted soils during shearing, the subloading yielding surface (Hashiguchi (1989)) to the elasto-plastic modeling is introduced. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

Numerical Analysis of Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과에 관한 수치계산)

  • Kim, Eun-Ra;Kang, Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, and it occurred from the confinement of the dilative deformation of compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working to the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure of input parameters needed in the elasto-plastic modeling are presented. In this paper, the subloading yielding surface(Hashiguchi(1989)) is introduced to the elasto-plastic modeling which could describe the irreversible deformation characteristics of compacted soils during shearing. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.