• Title/Summary/Keyword: Soil reinforcement

Search Result 566, Processing Time 0.032 seconds

Reinforcement Effect of Stabilizing Piles in Large-scale Cut Slops (대절토사면에 보강된 억지말뚝의 활동억지효과에 관한 연구)

  • 홍원표;한중근;송영석;신도순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-81
    • /
    • 2003
  • During the last few decades in Korea, the development of hillside or mountain areas has rapidly increased for infrastructure construction such as railroads, highways and housing. Many landslides have occurred during these constructions. Also, the amount and scale of damage caused by landslides have increased every year. In the case of Far East Asia including Korea, the damage of landslides is consequently reported during the wet season. In this paper, the effect of stabilizing piles on slope stability is checked and the behavior of slope soil and piles are observed throughout the year by field measurements in the large-scale cut slopes. In particular a large-scale cut slope situated on the construction site for the express highway in Donghae, Korea. First of all, The behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil gradually increased and rapidly decreased at depth of sliding surface indicating that the depth of sliding surface below the ground surface can be predicted. On the basis of being able to predict the depth of the sliding surface, stabilizing piles were designed and constructed in this slope. To ensure the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. The maximum deflection of piles is measured at the pile head and it is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

  • PDF

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Assessment of Drainage Properties of PBDs(Prefabricated Board Drains) for Soft Soil Reinforcement

  • Jeon, Han-Yong;Kim, Hong-Gwan;Chang, Yong-Chai;Chung, Chin-Gyo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.105-105
    • /
    • 2003
  • Theoretical studies have been performed for drainage and filtration characteristics, low consolidation rate of sandmat and prefabricated horizontal and vertical drain. Discussion on quality control and methodology, cost analysis for sandmat and prefabricated horizontal drains were performed.

  • PDF

Design and Construction of Green Slope Fabric Form on Cutting Slope (절토사면의 Nailing 보강 Fabric Form의 설계와 시공)

  • 송재헌;최영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.81-92
    • /
    • 2000
  • Green Slope(F.F.R : Fabric Form Reinforcement Method) is one of an environmental slope protection method at steep cutting sites. This method is that soil and rock at the steep slope is fixed using the environmental Fabric Form, Nail, Rock Bolt and Rock Anchor, And then, the surfaces covered with grasses or weeds. This method will be satisfied both safe slope protection and natural environment appearance. Green Slope is a useful method of the construction sites of steep cutting slopes.

  • PDF

Determination of Composite Strength Parameter Using Elasto-Plastic Theory (탄소성이론을 이용한 복합지반의 대표 강도정수 예측)

  • 이주형;김영욱;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.93-100
    • /
    • 2002
  • Vertical reinforcement of soft soils using the deep mixing method has received increasing applications. In this study, the theory of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining composite elastic properties and shear strength parameters. The developed equations were validated using the finite element computer program SAGE CRISP. The analysis involved 4 different cases-two different type of soil and replacement ratios. Tile results of the analysis show that the proposed equations could determine the properties of composite material for practical applications.

  • PDF

A Study on the Reinforcement of the Soil Blocking Facilities Due to Water Pipe Rupture Accident (상수관 파열 사고로 인한 흙막이 가시설 보강사례 연구)

  • Woo, Jong-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.241-243
    • /
    • 2023
  • 아파트 신축공사 흙막이 가시설 현장에 근접 매설된 상수관의 누수 및 파열 사고로 터파기 공사 현장에 토사 유실 및 지반 함몰이 발생되었으며, 흙막이 가시설의 토류판이 파손되었다. 흙막이 가시설의 안정성 확보를 위해 벽체구간은 레이커로 보강하고 사보강재는 1단과 2단을 묶어 힘을 분산시키고 종방향으로 보강 및 토류판 보강을 시행하였다.

  • PDF

Improvement of Detailed Soil Survey Guidance through the New Site Classification System and Reinforcement of Exploratory Soil Survey (조사 대상 부지 신규 분류 체계 제안 및 개황조사 강화를 통한 토양정밀조사 방법 개선 연구)

  • Kwon, Ji Cheol;Lee, Goontaek;Hwang, Sang-il;Kim, Tae Seung;Yoon, Jeong-Ki;Kim, Ji-in
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.53-60
    • /
    • 2015
  • This study suggested the new site classification system according to land use, type of contamination and contaminants. Because the present site classification system can not cover all the areas, we changed the concept of land use to more detail one and enlarged the concept of other areas to cover all the areas not defined as certain land use. In case of the present industrial area, it was merged as other areas to avoid the confusion with oil and toxic material storage tank farm area. Accident area was separated from other areas and defined as only accident area caused by the mobile storage facility. In addition to classify the sites according to the basic land use, we classify the sites again in lower level according to the type of contamination and contaminants. With this classification system, we proposed different soil sampling strategy with the consideration of the origin of contamination and the interactions between soil and contaminants. We removed the surface soil sample (0~15 cm depth) around above storage tank because it was not a effective sample to assess whether that area contaminated or not. We also proposed to take the deeper soil samples at minimum three sampling points to confirm the depth of contamination in exploratory soil survey. We also proposed to remove the one point of 15 m depth sampling because it is not effective to confirm contaminated soil depth and needs the exhausted labor and cost. Instead of doing this, we added the continuous sampling to uncontaminated subsoil. Soil sampling points and depth in detailed soil survey is determined based on the results of exploratory soil survey. Therefore, effectiveness and reinforcements of exploratory soil survey would play an important role in improving the reliability of detailed soil survey.

A Study on In-Situ Slope Reinforcement Methods Using Nailed Geotextiles (네일 및 지오텍스타일을 이용한 원위치 사면보강공법에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-152
    • /
    • 1994
  • In the present study, an economic design of Anchored Geosynthetic(AG) System applied mainly to reinforce unstable soil slopes is investigated. For this purpose methods of stability analysis are developed to determine the optimum installation angle, required minimum length and maximum spacing of nails. Anchorage of nails within the soil mass is achieved by frictional resistance to pull out along the effective length of the nails. Cases of infinite slope and finite slope are dealt with individually. Silce methods of stability analysis developed in the present study are limit-equilibrium-based. For the case of finite slope Spencer method which considers interslice force is modified to evalyate the overall stability. In addition, the effects of various design parameters on requried length and spacing of nails corresponding to the optimum orientation of nails are analyzed. Based on the analysis, a simplified equation is given for the optimum nail orientation. Also the importance of optimum nail orientation is illustrated throughout design example, and the appropriateness of judgment criterion are examined.

  • PDF

Behavior of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.379-386
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF