• Title/Summary/Keyword: Soil problems

Search Result 1,184, Processing Time 0.03 seconds

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

Effect of Paddy BMPs on Water Quality and Policy Consideration in Saemangeum Watershed (새만금 유역에서 논 최적관리기법의 수질개선 효과와 정책고려사항)

  • Kim, Jonggun;Lee, Suin;Shin, Jae-young;Lim, Jung-ha;Na, Young-kwang;Joo, Sohee;Shin, Minhwan;Choi, Joongdae
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.304-313
    • /
    • 2018
  • Agricultural land reclamation in Saemangeum tidal land project is mostly planned to be completed by 2020. Irrigation water for the land is required to be prepared by that time. However, water quality for the irrigation sources is barely meet the target concentration. This paper described the reduction effect of and policy consideration for best management practices (BMPs) which were fertilizer prescription by soil test (SO#1), mixed application of SO#1 and 3 (SO#2), drainage gate control (SO#3), time-release fertilizer application (SO#4), and control (CT). Reduction of paddy runoff was relatively higher in SO#3 (25%) and SO#1 (27%) while lower in SO#4 (9%) and SO#2 (7%) than that in CT. In addition, farmers promised to follow the BMP guidelines but they didn't because of the several problems caused for the BMPs implementation. Thus, it recommended developing an automated control of irrigation gate and paddy water depth and supporing farmers for NPS pollution control and irrigation water reduction.

A Study on Environmental Impact Assessment Guidelines for Marine Environmentsin Construction Projects of Offshore Waste Disposal Landfills (해상최종처리장 건설사업의 해양환경 환경영향평가 가이드라인 개발 연구)

  • Lee, Haemi;Son, Minho;Kang, Taesoon;Maeng, Junho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.312-331
    • /
    • 2019
  • An offshore waste disposal facility refers to a landfill site for final landfilling of stabilized inorganic solid waste such as land and marine waste incineration materials, and the aim of such a facility is to solve the problem of insufficient waste disposal space on land and create and develop environmentally friendly marine spaces. The purpose of this study is to prepare guidelines for the construction of offshore waste disposal facilities, which reflect the need and importance of paying sufficient heed to environmental considerations from the initial stage of the project, in order to investigate, predict, and assess how such guidelines will affect the marine environment in relation to the construction of offshore waste disposal facilities, with the goal of minimizing the impact on and damage to the environment. For the purpose of this research, guidelines focusing on the construction of offshore waste disposal facilities were derived through an analysis of domestic cases and similar foreign cases and an assessment of their level of compliance with existing EIA guidelines through the operation of a discussion forum. In order to review the EIA report on similar cases in Korea, 17 EIA documents (2005~2016) for dredged soil dumping areas and ash ponds of thermal power plants were analyzed to investigate the status of marine organisms, marine physics, marine water quality, and marine sediment and to understand what types of problems can occur and what improvement measures can be taken. The purpose of these guidelines were to minimize damage to the marine environment by promoting EIA protocols in accordance with scientific and systematic procedures, to reduce the consultation period related to projects, to resolve social conflicts, and to reduce economic costs.

Finite element method adopting isoparametric formulation of the quadrilateral elements (등매개변수 사변형요소를 적용한 유한요소해석법)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.205-212
    • /
    • 2018
  • In order to overcome shortcomings of commercial analysis program for solving certain geotechnical problems, finite element method adopting isoparametric quadrilateral element was selected as a tool for analyzing soil behavior and calculating process was programmed. Two examples were considered in order to verify reliability of the developed program. One of the two examples is the case of acting isotropic confining pressure on finite element and the other is the case of acting shear stress on the sides of the finite element. Isoparametric quadrilateral element was considered as the finite element and displacements in the element can be expressed by node displacements and shape functions in the considered element. Calculating process for determining strain which is defined by derivatives using global coordinates was coded using the Jacobian and the natural coordinates. Four point Gauss rule was adopted to convert double integral which defines stiffness of the element into numerical integration. As a result of executing analysis of the finite element under isotropic confining pressure, calculated stress corresponding to four Gauss points and center of the element were equal to the confining pressure. In addition, according to the analyzed results for the element under shear stress, horizontal stresses and vertical stresses were varied with positions in the element and the magnitudes and distribution pattern of the stresses were thought to be rational.

Reconsideration and Conservational Scientific Diagnosis of Silla Stone Monument in Bongpyeong-ri, Uljin (울진 봉평리 신라비의 재판독과 보존과학적 진단)

  • Jo, Young-hoon;Lee, Chan-hee;Shim, Hyun-yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.48-67
    • /
    • 2013
  • This study was focused on the recognition of historical values and the establishment of conservation schemes for a Silla stone monument in Bongpyeong-ri, Uljin by combining the humanistic investigation of inscription reinterpretation and the scientific conservational diagnosis of deterioration. According to the investigation of inscription, a total of 13 letters were reconsidered compared to the preceding researches. Thus, the meaning and interpretation of previous inscription was partially changed. This monument is composed of gneissose leucogranite and the most suitable site as provenance of the stone would be the Jukbyeon seashore (2.1km). The site shows similar color, size and composition of minerals, gneissose structure and magnetic susceptibility as the Bongpyeong stone monument. This monument developed a structural crack (crack index 0.4) and a microcrack (crack index 2.0) along the gneissose structure. The horizontal strength is weaker than the vertical strength. Therefore, the cracks should be reinforced and treated. However, consolidating is not urgently needed because the total weathering grade by ultrasonic velocity shows the stage of moderate weathering(3,403m/s, 0.32). Also, the major problems of chemical deterioration are blackening (85.2%) with soil, iron oxide,rubbing mark, and salt crystals (17.3%) from the sea. Therefore, the contaminants and the salt crystals should be removed using pressure spray and pulp paper, while the application of poultice should be examined through clinical tests.

Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone (불포화대 지질특성에 따른 지하수오염취약성 평가)

  • Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.727-740
    • /
    • 2018
  • The media in the undersaturated zone is defined as the uppermost layer of the water table at which the groundwater is unsaturated or saturated discontinuously. The properties of the unsaturated zone can affect the reduction of contaminants that flow from the lower part of soil to the water table. In recent, there have been problems in evaluating groundwater contaminations vulnerability because weighted value for permeability is given, regardless of anisotropy and heterogeneity in the unsaturated media. Geological media have various ranges of permeability. When applying the weighted value, representative of permeability for grain sizes standardized, to construction of contamination vulnerability, it will produce more exaggerated result than the case that considers unsaturated geological properties. In this study, we performed laboratory column tests considering two sets of the unsaturated layers in order to investigate the permeability in anisotropic unsaturated zone with anisotropy. On the basis of the tests, average permeability coefficients were calculated considering the properties of unsaturated media obtained from drill cores in the field. The final contamination vulnerability map constructed shows that the contamination vulnerability map applying the properties of geological media of the unsaturated zone coincides much better with the results measured in the field, compared to the case of contamination vulnerability considering the weighted value in the unsaturated zone.

Complementary measures for Environmental Performance Evaluation Index of External Space of Green Standard for Energy and Environmental Design for Apartment Complex - Focused on the Respect of Response to Climate Change - (공동주택 녹색건축인증기준의 외부공간 환경성능 평가지표 보완방안 - 기후변화 대응 측면을 중심으로 -)

  • Ye, Tae-Gon;Kim, Kwang-Hyun;Kwon, Young-Sang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • An apartment complex is a building use with great potential to contribute to solving problems related to urban ecological environment and climate change. The first goal of this study is to grasp the current situation of application and limitations of the ecological area rate, which is a representative evaluation index used to evaluate the environmental performance of the external space of an apartment complex in Green Standard for Energy and Environmental Design (G-SEED). The second goal is to propose a prototype of the evaluation index for evaluating greenhouse gas (GHG) reduction performance in order to supplement the evaluation index for the environmental performance of the external space in terms of response to climate change. We analyzed 43 cases of apartment complexes certified according to G-SEED, which was enforced since July 1, 2010, and found application characteristics of each space type and the limitations of ecological area rate. We analyzed overseas green building certification systems such as LEED and BREEAM that derived implications for supplementing the limitations of ecological area rate, which is focused on the evaluation of soil and water circulation function, and set up a development direction of complementary measures. Through analysis of previous studies, relevant regulations and standards, and technical documents of the manufacturer, the heat island mitigation performance of the pavement and roof surfaces of the apartment complex and the carbon uptake performance of the trees in the apartment complex was selected as parameters to yield the GHG reduction performance of the external space of the apartment complex. Finally, a quantitative evaluation method for each parameter and a prototype of the evaluation index for the GHG reduction performance were proposed. As a result of applying the prototype to an apartment complex case, the possibility of adoption and applicability as an evaluation index of G-SEED were proved.

A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information (머신러닝 기법과 TBM 시공정보를 활용한 토압식 쉴드TBM 굴진율 예측 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.540-550
    • /
    • 2020
  • Machine learning has been actively used in the field of automation due to the development and establishment of AI technology. The important thing in utilizing machine learning is that appropriate algorithms exist depending on data characteristics, and it is needed to analysis the datasets for applying machine learning techniques. In this study, advance rate is predicted using geotechnical and machine data of TBM tunnel section passing through the soil ground below the stream. Although there were no problems of application of statistical technology in the linear regression model, the coefficient of determination was 0.76. While, the ensemble model and support vector machine showed the predicted performance of 0.88 or higher. it is indicating that the model suitable for predicting advance rate of the EPB Shield TBM was the support vector machine in the analyzed dataset. As a result, it is judged that the suitability of the prediction model using data including mechanical data and ground information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of data.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.

Analysis of Research Trends of Ecosystem Service Related to Climate Change Using Big-data (빅데이터를 활용한 기후변화와 연계된 생태계서비스 연구 동향분석)

  • Seo, Ja-Yoo;Choi, Yo-Han;Baek, Ji-Won;Kim, Su-Kyoung;Kim, Ho-Gul;Song, Won-Kyong;Joo, Woo-Yeong;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • This study was performed to investigate the ecosystem service patterns in relation to climate change acceleration utilizing big data analysis. This study aimed to use big data analysis as one of the network of views to identify convergent thinking in two fields: climate change and ecosystem service. The keywords were analysed to ascertain if there were any differences in the perceiving problems, policy direction, climate change implications, and regional differences. In addition, we examined the research keywords of each continent, the centre of ecosystem service research, and the topics to be referred to in domestic research. The results of the analysis are as follows: First, the keyword centrality of climate change is similar to the detailed indicators of The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) regulations, content, and non-material ecosystem services. Second, the cross-analysis of terms in two journals showed a difference in value-oriented point; the Ecosystem Service Journal identified green infrastructure as having economic value, whereas the Climate Change Journal perceives water, forest, carbon, and biodiversity as management topics. The Climate Change Journal, but not the former, focuses on future predictions. Third, the analysis of the research topics according to continents showed that water and soil are closely related to the economy, and thus, play an important role in policy formulation. This disparity is due to differences in each continent's environmental characteristics, as well as economic and policy issues. This fact can be used to refer to the direction of research on ecosystem services in Korea. Consistent with the recent trend of expanding research regarding the impacts of climate change, it is necessary to study strategies to scientifically predict and respond to the negative effects of climate change.