• Title/Summary/Keyword: Soil pore water

Search Result 515, Processing Time 0.022 seconds

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

An Empirical Study on the Characteristics of Pore Water Pressure Reaction in Colluvium Model (붕적층내의 간극수압 반응에 관한 실험적 연구)

  • 정두영;최길렬
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.59-70
    • /
    • 1992
  • This work is to study experimentally the measurment of pore air pressure according to rainfall in colluvium model and the characteristics of pore water pressure according to increasement of artesian ground water head. After modeling a geological feature of the Tertiary formation, the experiment was performed about sixty times on three kinds of soil. This experimental results showed the variation of pore water and pore air pressures with time, the change of void ratio and appling pressure head in the nonsaturated soil. It can be also expressed by the final pore water and the air reaction ratios and then formularizing the relationship between the permeability coefficient and the void ratio. In the results of this experiment, the patterns of the pore water pressure reaction are classified by the step-type and the wave-type, and the time-lag to reach final point of pore water pressure is in order sand, sandy silt and clayey sand.

  • PDF

Excess Pore Water Pressure Calculation Methods due to Gas Hydrate Dissociation (가스 하이드레이트의 해리로 발생하는 간극수압의 계산방법)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.888-892
    • /
    • 2008
  • If gas hydrate dissociates due to natural and/or human activities, it generates large amount of gas and water. Upon gas hydrate dissociation, a generated pore water pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness and strength. In order to predict the generated excess pore water pressure due to gas hydrate dissociation, two methods based on small hydrate concept (SHC) and large hydrate concept (LHC) are proposed. An excess pore water pressure generated by the gas hydrate dissociation in the Storegga Slide was calculated using two proposed methods.

  • PDF

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution (Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향)

  • Yu, Gihyeon;An, Jinsung;Jeong, Buyun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Biotic ligand model (BLM) and species sensitivity distribution (SSD) were used to determine the site-specific Cu threshold concentration (5% hazardous concentration; HC5) in soil pore water. Model parameters for Cu-BLM were collected for six plants, one collembola, and two earthworms from published literatures. Half maximal effective concentration ($EC_{50}\{Cu^{2+}\}$), expressed as $Cu^{2+}$ activity, was calculated based on activities of major cations and the collected Cu-BLM parameters. The $EC_{50}\{Cu^{2+}\}$ varied from 2 nM to $251{\mu}M$ according to the variation in environmental factors of soil pore water (pH, major cation/anion concentrations) and the type of species. Hazardous activity for 5% (HA5) and HC5 calculated from SSD varied from 0.076 to $0.4{\mu}g/L$ and 0.4 to $83.4{\mu}g/L$, respectively. HA5 and HC5 significantly decreased with the increase in pH in the region with pH less than 7 due to the decrease in competition with $H^+$ and $Cu^{2+}$. In the region with pH more than 7, HC5 increased with the increase in pH due to the formation of complexes of Cu with inorganic ligands. In the presence of dissolved organic carbon (DOC), Cu and DOC form a complex, which decreases $Cu^{2+}$ activity in soil pore water, resulting in up to 292-fold increase in HC5 from 0.48 to $140{\mu}g/L$.

Sampling and Analysis of Soil Pore Water for Predicting the Diffusion and Behavior of Soil Pollutant Using Soil Lysimeter (토양라이시미터를 이용한 토양오염확산.거동 예측을 위한 토양공극수 채취와 분석)

  • Ko, Il-Won;Lee, Se-Yong;Kim, Kyoung-Woong;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.551-561
    • /
    • 2007
  • This case study is about the sampling and interpretation of soil pore water in order to understand and to predict the diffusion and behavior of soil pollution. For the measurement of polycyclic aromatic hydrocarbons(PAHs) in two representative hydrocarbon-contaminated sites, the extraction system of the soil pore water was set up with respect to soil depths and the behavior of contaminants was interpreted. The soil solution extraction system consisted of peristaltic pump, and extraction and sampling compartment, and can measure simultaneously the soil water pressure. The concentration of PAHs with respect to extraction pressure and time decreased due to dilution through soil pore water. Particularly, the concentration of PAHs was more reduced under the unsaturated oxic condition than saturated anoxic condition. Therefore, the soil solution extraction with respect to soil water pressure can interpret the extent of equilibrium between porewater and soil surface.

Analysis of soil coarse pore fraction by major factors for evaluation of water conservation function potential in forest soil (산림토양의 수원함양기능 잠재력 평가를 위한 주요 인자별 토양 조공극률 분석)

  • Li, Qiwen;Lim, Hong-Geun;Moon, Hae-Won;Nam, Soo-Youn;Kim, Jae-Hoon;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.35-50
    • /
    • 2022
  • As the water shortage has become a noticeable issue due to climate change, forests play an importance role as the provider of water supply service. There is, however, little information about the relationships between the factors used in the estimation of water supply service and coarse pore fraction of forest soil which determines the potential of water supply. To find out whether there would be an amelioration in the scoring system of water supply service estimation, we examined all factors except meteorological one and additionally, analyzed 4 extra factors that might be related with coarse pore fraction of soil. A total of 2,214 soil samples were collected throughout South Korea to measure coarse pore fractions from 2015 to 2020. First, the result of average coarse pore fraction of all samples showed 32.98±6.59% which was consistent with previous studies. And the results of non-parametric analysis of variance indicated that only two of eleven factors that was used in the scoring system matched the results of coarse pore fraction of forest soils. Tree canopy coverage showed no difference among categories, and slope also showed no significance at level of 0.05 in the linear regression analysis. Additionally, the applicability of 4 extra factors were confirmed, as the result of coarse pore fractions of soil samples were different for various categories of each factor. Therefore, the scoring system of water supply service of forest should be revised to improve accuracy.

Pore Water Pressure Characteristic of Unsaturated Weathered Granite Soil Slopes through Rainfall Simulation (강우재현모형실험에 의한 불포화 화강풍화토 사면의 간극수압 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3287-3295
    • /
    • 2009
  • This present study implemented a rainfall simulation system, and performed simulation and numerical analysis according to rainfall and slope conditions using a model slope built with weathered granite soil. Extensive analysis were conducted on the characteristics of changes in volumetric water content and pore water pressure measured in the simulation, and compared them with the results of numerical analysis. It took longer for the volumetric water content to reach the limit when rainfall intensity was high and the slope was steep and shorter when rainfall intensity was low and the slope was gentle. When rainfall intensity was low and the duration of rainfall was short, negative pore water pressure was higher and the time for restoration was shorter. On the contrary, when rainfall intensity was high and the duration of rainfall was long, it took a longer time to restore negative pore water pressure. In the results of rainfall simulation and numerical analysis, the distribution of volumetric water content and pore water pressure was similar between the two. However, the volumetric water content was different by up to 5%, and pore water pressure by up to 3kPa.

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.