• Title/Summary/Keyword: Soil physical characteristics

Search Result 483, Processing Time 0.026 seconds

Study on the Practical Use of Artificial Media and Aritifical Soil for Agriculture by Standard Planting (표준재배에 따른 인공배지 및 인공토양의 농자재화를 위한 실용화연구)

  • 김선주;윤춘경;김해도;양용석
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.682-688
    • /
    • 1999
  • We threat sludge by heating methods with low pollution and high efficiency. Organic and inorganic components in Sludge can be almost removed through the heaging treatment process, and thefinal products are called artifical aoil or artificial media which are depended on temperature control. It can be recycled on the agricultural sites. Because it contained sort of organic matters while high heaging process with addition. To use them as agricultural materials, it need to know their characteristic transform in the nature. So we have planting bean and corn for two years with standard planting methods and to anticipate changing characteristics of artificial media and artificial soil by staying it natural condition, analyze it physical and chemical characteristics. This study will be contributed to reduce mass enviornmental problems by the treatment of Sludge and make it possible application for a agriculture use.

  • PDF

A Study on the Parameters Influencing the Failed Soil-Slope in Okcheon Metamorphic Zone (옥천변성대 절개지 사면의 토층붕괴 영향인자에 관한 연구)

  • Lee, Kyoung-Mi;Kim, Byung-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.501-508
    • /
    • 2009
  • This study aims to clarify the characteristics of the physical and mechanical properties of soil-slope failure of Okcheon metamorphic zone. Soil samples were collected from 35 collapsed and uncollapsed artificial slopes along national roads. A series of laboratory experiments was carried out to examine physical and mechanical properties of soils and rocks. The results show that failure slopes have weakness of failure at 0.75 of AMI or higher, 32% of liquid limit or higher, and 31% of saturated moisture content or higher. The plastic index of failure slopes is correlated to wet density and saturated density. It turned out that failure could easily happen according to a high plastic index even if the void ratio was low. The greater the contents of bigger-sized soil, i.e. contents of sands and gravels rather than of clays, is the greater the chance to fail at the slope.

A Laboratory Test for Detecting the Infiltrating Characteristics of Unsaturated Soil in Soil Slide (흙사면 절개지 불포화토의 침투거동 특성에 관한 연구)

  • Kim Man-Il;Chae Byung-Gon;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.487-494
    • /
    • 2005
  • In order to estimated a reason of soil slope failure new measurement technology is demanded to measure a variation of volumetric water content which is a key physical parameter for understanding the slope failure in the field. In this study a laboratory soil tank test were conducted to use RDB and ADR measurement probes for measuring the variation of volumetric water content. These experiments were compared with two physical parameters as volumetric water content and pressure water head which are estimated to the compacted weathered granite soil under the artificial rainfall, 7.5mm/hour, in the whole of two stages. From the results the variation of volumetric water content and pressure water head is represented to nearly similar travel time.

Effect of Ridge Height on the Growth and Flowering of Gypsophila paniculata (이랑높이가 안개초 생육 및 개화에 미치는 영향)

  • Cheong, Dong-Chun;Lim, Hoi-Chun;Kim, Kab-Cheol;Song, Young-Ju;Kim, Jeong-Man
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.255-259
    • /
    • 2008
  • This study was conducted to investigate the effect of ridge height (10 cm, 20 cm, 30 cm, and 40 cm) on the soil physical property, the growth and flowering characteristics of Gypsophila paniculata (cv 'Bristol Fairy') in the subalpine area. As ridge height got higher, the daily soil temperature, the soil moisture content, soil hardness, bulk density, and solid phase ratio were decreased, but porosity ratio was a little increased. In summer and autumn cultivation the blooming of ridge height 30 cm and 40 cm was slightly delayed, but their root activity, cut flower width, and yield were better than those of 10 to 20 cm ridges. And the mortality ratio of plants, rosette formation rate, and nonpaniculata inflorescence rate became lower.

A Pilot Experiments for Evaluation of Cover Soil Loss from Inclined Upland around Remediated Abandoned Mine Site - The Condition of Chemical Characteristics and Inclination - (광해복원 경사지 밭의 토양유실 평가를 위한 현장실험 - 화학적 성질과 경사도 조건에서 -)

  • Yun, Sung-Wook;Kang, Hui-Cheon;Kwon, Yo-Seb;Koh, Il-Ha;Jeong, Mun-Ho;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • In-situ pilot experiment was carried out to establish a countermeasure on the soil loss from the hill side uplands that was rehabilitated by soil remediation method nearby abandoned mine sites for 2 years. It was considered that the affect of an inclination of cover surface, a stabilization treatment of cover layer by lime and steel refining slag (SRS) and a vegetation of soil surface as an effect factors in the experiment. It was constructed 4 lysimeters (plots, 22 m long, 4 m width) on the hilly side (37% inclination). One plot was control and two plots was treated by 1% lime and SRS. A remind one plot was modified a inclination to 27% to compare the affect of inclination on the amount of cover soil loss. It was attached a reservior tank and water level gauge in the end of lysimeters to measure the amount of the surface water flow and soil loss. It was also installed the automated sensors that could be collect the precipitation, soil moisture content, tension of cover layer in each plots. It was observed that the event of precipitation were caused the soil loss and it were related the physical and chemical properties of cover soil and inclination of surface layer of plots. During the experiment, it was exceeded the national regulation (50 t/ha/yr) in 37% inclination plots even though it was vegetated on the cover soil surface. However, in 27% inclination plot, it was shown that the amount of soil loss was maintained below the national regulation and, more ever, vegetation could reduce the the amount of soil loss. Therefore it was expected that such results could be applied to the future design of rehabilitation projects on the polluted farmland nearby abandoned mine sites.

Characteristics of compaction and strength for synthetic fiber reinforcement soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭;장병욱;이용범;임성윤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.444-448
    • /
    • 1998
  • This paper presents the results of an experimental investigation on the compaction and compressive strength of polypropylene fiber reinforced soils. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$$_{dmax}$ (maximum dry unit weight), with four different concentrations(i.e., 0.1%, 0.3%, 0.5% and 1.0% weights) of mono-filament and fibrillated polypropylene fibers. The test results indicate an appreciable increase in strength due to addition of fibers. OMC is increased with the concentration ratio of fiber, but ${\gamma}$$_{dmax}$ is decreased. From the viewpoint of strength, the fibrillated polypropylene fiber soil is more effective than the mono-filament polypropylene fiber soil.oil.

  • PDF

Estimation of Specific Gravity of Soil Mixture (배합비에 따른 혼합토의 비중 산정)

  • Shin, Hyun-Young;Kim, Kyoung-O;Kim, You-Seok;Park, Jin-Yoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

ALC(Autoclaved Light-weight Concrete)를 이용한 생물학적 반응벽체에 관한 연구

  • Park Geun-Min;Lee Jae-Yeong;O Byeong-Taek;Choi Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.402-406
    • /
    • 2006
  • The physical and chemical characteristics of ALC were analyzed and showed 2.2 of specific gravity and 9.05 of pH. The results of leaching tests with standard method for soil and waste indicated heavy metals(Cu, Cd, Pb, $Cr^{6+}$) were under maximum concentration level. The anaerobic digestion sludge was attached in the surface of ALC within 90 hours. As the results of batch test, pH of the ALC and Bio-ALC were decreased from initial pH of ALC to 8.7 and 7.8 respectively Also, the concentration of heavy metals was rapidly eliminated in the solution with the batch test. The result of column experiment indicates that the removal efficiency of ALC was showed 66% of T-P, 60% of T-N, and 67% of CODcr. Also, removal efficiency of Bio-ALC was slightly higher than that of ALC in T-N (64%) and CODcr (74%).

  • PDF

Compositional Changes of Kochujang During Fermentation in Onggis with Different Physical Properties (물리적 특성이 다른 옹기에서의 고추장 발효 중 성분 변화)

  • Chung, Sun-Kyung;Lee, Kwang-Soo;Lee, Dong-Sun;Lee, Se-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2007
  • This research investigated the effect of different onggi containers (Korean earthenware) on the ripening of kochujang (Korean hot pepper paste). The physical characteristics of 'onggi', were evaluated as function of manufacturing variables such as raw material soils (onggi-specific soil, red brown soil, and fine powdered soil) and galzing treatments. The physical properties were then related to the compositional quality changes of the kochujang fermented at $30^{\circ}C$ for 4 months. The porosity of the onggi containers seems to be increased by the content of finer raw soil rather than the chemical component of soil (amount of CaO, MgO, $K_2O$ and $Na_2O$, acting as melting aid in the firing). Natural glaze was measured to contain higher contents of CaO, MgO, $K_2O$ and $Na_2O$ than the other soils, which is desirable property for the fired onggi. The glazed surface showed higher far-infrared radiation emissivity than the non-glazed part. The kochujang fermented in P0-BG (the glazed onggi from 100 % onggi soil) attained higher concentration of reducing sugar, amino nitrogen and nucleotides compared to those in the other onggis. All of these changes of kochujang in P0-BG resulted in significantly better sensory quality than the other treatments.

  • PDF

Control of physical properties and characteristics of soil through combination of ingredients of clay (태토 성분조합을 통한 도자기용 흙의 물성조절 및 특성변화)

  • Kim, Duhyeon;Lee, Haesoon;Kim, Jihye;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.35-50
    • /
    • 2021
  • This study analyzed the basic properties of soil material gathered around Maegok-dong in Gwangju, Gyeonggi-do Province (hereafter, "Maegok soil") and the physicochemical changes in the Maegok soil resulting from the addition of other clay materials in order to present scientific information about the properties of clay available for pottery production. Gravel, coarse sand, and fine sand account for 73% of the total mass of the Maegok soil. Therefore, it required refinement through sifting in order to serve in pottery clay. After sifting, the amount of silt and clay in the soil increased to 95% of the total mass. However, since it lacked plasticity and viscosity, buncheong soil was added. When it was mixed with bungcheong soil at a ratio of 7:3, Maegok soil improved as pottery clay as its viscosity increased, demonstrating compositional properties appropriate for ceramic clay even after firing. Further, its water-absorption rate was decreased to 0.40. This means that soil gathered from anywhere can be used for pottery-making by refining its original properties and through mixture with clay with specific components which help the pottery maintain its shape even after firing.