• Title/Summary/Keyword: Soil phosphorus

Search Result 822, Processing Time 0.028 seconds

The Nitrogen, Phosphate, and Potassium Contents in Organic Fertilizer (유기질비료의 질소, 인산, 칼륨 함량 분포 특성)

  • Yun, Hong-Bae;Kaown, Dug-In;Lee, Jong-Sik;Lee, Ye-Jin;Kim, Myung-Sook;Song, Yo-Sung;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.498-501
    • /
    • 2011
  • The nitrogen, phosphorus, and potassium contents are the key factors to determine the quality of organic fertilizers and right amount of application for agricultural uses. The major nutrient contents in raw materials used for making organic fertilizers and products were evaluated in this study. Among the raw materials that were investigated, soybean cake gave the highest total N content at $76g\;kg^{-1}$, followed by perilla cake ($70g\;kg^{-1}$), rape seed oil cake ($66g\;kg^{-1}$), cotton seed cake ($54g\;kg^{-1}$), and rice bran ($22g\;kg^{-1}$). We investigated 43 organic fertilizers and our results showed widely varied concentrations of major nutrients : total N at $30.5-139g\;kg^{-1}$, total $P_2O_5$ at $2.3-96.3g\;kg^{-1}$, and total $K_2O$ at $0.1-29.3g\;kg^{-1}$. Our study would like to emphasize the importance of nutrient content labeling in packed organic fertilizers to be able to know its efficiency and for determining the right amount for application.

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

VARIETAL DIFFERENCES IN DISTRIBUTION AND PHYSIOLOGICAL CHARACTERISTICS OF RICEROOT (수도근(水稻根)의 분포(分布) 및 생리적(生理的) 특성(特性)에 관(關)한 품종간차이(品種間差異))

  • Park, H.;Park, Y.S.;Kim, Y.W.;Shin, C.S.;Kim, Y.S.
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 1972
  • Varietal difference in root distribution and other root characteristics were investigated under fold and water culture condition. The results were as follows: 1. IR667 showed funnel type of root distribution in soil profit while Jinheung had barrel type, and each type appearance was more distinguishable with fertilizer application. 2. Root weight per tiller was smaller in IR667 than in Jinheung and IR667 had more root in 0 to 5cm of soil depth but Jinheung had more in 5 to l0cm depth. 3. Horizontal distribution of root was dencer near to stem base without fertilizer than with fertilizer in both IR667 and Jinheung indicating structural construction for intensive nutrient uptake. Between varieties this 'dence to stem base' trend accompaning 'dence to wide spacing side' was greater in IR667 without fertilizer and these were quite true with fertilizer in Jinheung. 4. The decreasing rates of root and ear weight by fertilizer application were greater in IR667 than in Jinheung. This and other characteristics indicated that the root of IR667 is likely to be panicle-number type comparing with Jinheung. 5. The root of IR667 had lower oxidizing power of ${\alpha}-naphthylamine$ than that of Jinheung indicating weaker resistance to reductive soil but cation exchange capacity of water-cultured root was higher in IR667 suggesting stronger nutrient uptake. 6. The content of phosphorus and especially potassium in root were higher with fertilizer but lower without fertilizer in IR667 than in Jinheung indicating that IR667 is more sensitive to root environment. 7. The contents of N, K and CEC were increasing toward root tip while P content was decreasing. The root from surface soil had higher N and K content than that from subsoil. The contents of N,P,K, and CEC of root at harvesting stage were about 1.0%, 0.1%, 0.5% and 15me/100g at dry weight base, respectively.

  • PDF

Ecological Studies on Vegetation Recovery of Burned Field after Forest Fire (산화적지의 식생회복에 관한 생태학적 연구)

  • Kang, Sang Joon;Jong Tai Lee
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.54-62
    • /
    • 1990
  • The recovery of vegetatiion and soil properties in the burned fields after forest fire were studied in Chung Cheong Buk Do area, Korea, from July 23 to 28, 1981. Miscanthus sinensis var. purpurascens, Carex humilis and Lespedeza bicolor were dominant species in the burned field of the second year after forest fire as well as unburned field. Especially, Lespedeza bicolor was gradually grown to the dominant species. Lespedeza bicolor, Carex humilis and Miscanthus sinensis var. purpurascens were the dominant species in the burned field of the fifth year after forest fire. Biological spectra of the burned fields were similar to the umburned fields with $H-e-D_1-R_5$ or $Ph-e-D_1-R_5$ from the second year after forest fire. Accordingly, biological spectra were recovered to the unburned fields from the second year. Degree of successiion was DS=423 in the burned field and DS=524 in the unburned field in 1981. The DS of the burned fields was gradually increased and recovered to be similar to the unburned from the second year. In the species diversities and evenness index, H,e and $\beta$ of the burned field in 1981 were higher and $\lambda$ was lower than the unburned field, but all of the indices were recovered to the unburned field from the second or third years. Accordingly, the vegetation of the first year was the complex community in view floristic composition, but it was recovered to the simple community as unburned field fromthe second or third years. In the soil preperties, pH, total nitrogen, available phosphorus, exchangeable potassium, exchangeable calcium and exchangeable magnesium were increased and organic matter was decreased due to forest fire, and then was recovered to the unburned field from the second or third years. The vegetation and soil properties of the burned field after forest fire were similary recovered to the unburned field from the second or third years. Accordingly, there was a close relationship between the trend of vegetation recovery and the changes of soil characteristics after forest fire.

  • PDF

Characteristics of Nutrient Uptake and Stubble Regrowth of Grain Sorghum in Plastic Film House (비닐하우스 재배 수수의 그루터기 재생 및 양분흡수 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Chang-Yeong;Hwang, Jae-Bog;Choi, Young-Dae;Jeon, Seung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.992-997
    • /
    • 2012
  • This study was conducted to get the basic information for absorb enhancement of accumulated soil nutrients in plastic film house. The grain sorghum (Sorghum bicolor L.) was sowing in plastic film house which soil nutrient accumulated moderately and was cutting at major growth period of sorghum. We were analyzed the regrowth pattern, biomass due to cutting time and amount of plant nutrient of grain sorghum. The obtained results were as follows. The heading date after cutting of sorghum in plastic film house was came to about 35 days. The accumulated of plant height were the longest as 379.4 cm in cutting at milk stage. The total biomass of sorghum in cutting at heading stage was 1.73 ton $10a^{-1}$ in cutting at heading stage. The high grain yields were produced with non-cutting and cutting at 10 leaves stage as 75~113 kg $10a^{-1}$ but the lowest grain yields were the cutting plots at booting stage as below 24 kg $10a^{-1}$. The content of nutrient in sorghum plant was low as progress of growth. The concentrations in aboveground sorghum due to plant parts was in order to leaves > panicle > stalk. The nitrogen content of sorghum was 0.6~0.7% in stalk, 1.5~1.6% in panicle and 1.8~2.3% in leaves. The amount of nutrient absorbed in sorghum was 4.2 kg $10a^{-1}$ in nitrogen, 1.7 kg $10a^{-1}$ phosphorus and 7.7 kg $10a^{-1}$ in potassium and the absorbing different by cutting time in order to booting > non-cutting > panicle formation ${\geq}$ milk ripe > 10 leaves stage.

Effect of Mulching with Easily-Decomposable Organic Materials on the Rice Growth and Earthworm Ecology Characteristics in Paddy Fields (분해성 피복자재의 멀칭처리가 벼 생육 및 지렁이 생태에 미치는 영향)

  • Nam, Hong-Shik;Lee, Sang-Beom;Park, Kwang-Lai;Hong, Seung-Gil;Kang, Chung-Kil;Son, Jin-Kwan;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.72-86
    • /
    • 2014
  • This study was conducted to investigate the effects of mulching of easily-decomposable organic materials including rice powder and corn starch on rice paddy fields. The treatments were including seven mulching materials each consisted of rice powder [Rice], starch with black color [Starch-B] and transparent [Starch-T] and stone powder [Stone], and conventional vinyl [Conventional], no-mulching without herbicide [Control-O] and no-mulching with herbicide [Control-C]. Rice growth and yield were different among the treatments; the highest yields were observed for [Rice] ($6.51ton\;ha^{-1}$) and [Conventional] ($6.47ton\;ha^{-1}$) followed by [Starch-T] ($6.25ton\;ha^{-1}$) and [Stone] ($6.20ton\;ha^{-1}$) which is comparable to the [Control-C] ($6.15ton\;ha^{-1}$). However, [Starch-B] showed lower rice yield ($4.93ton\;ha^{-1}$) than the [Conventional] or [Control-C]. Mean soil temperature ranged form 23.6 to $24.1^{\circ}C$ with the highest temperature for [Rice] treatment, and cumulative soil temperature was also significantly higher in the [Rice] treatment. Among the soil parameters, electrical conductivity, organic matter content, and phosphorus concentration were also different among the treatments. The amount of earthworm casting was higher for [Rice] treatment ($17.7kg\;m^{-2}$) compared to the others ($5.5{\sim}9.8kg\;m^{-2}$). It was suggested that mulching of rice fields with organic materials containing rice powder is better than others in respected to rice yield and earthworm activity.

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

Effect of Livestock Manure Application on the Productivity of Whole Crop Rice, Feed Value and Soil Fertility (가축분뇨 시용이 총체 벼의 생산성, 사료가치 및 토양의 화학성에 미치는 영향)

  • Lim, Young-Chul;Yoon, Sei-Hyung;Jung, Min-Woong;Kim, Won-Ho;Kim, Jong-Geun;Lee, Joung-Kyong;Seo, Sung;Park, Nam-Gun;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.287-296
    • /
    • 2007
  • The experimental work was conducted to determine the growth characteristics and yield of whole crop rice (cv. Suwon 468 and cv. Chuchungbeo) and soil properties using various type of livestock manure application on rice paddy land for 3 years ($2003{\sim}3005$). Compared Suwon 468 and Chuchungbeo, Suwon 468 has longer plant height and more DM yield than that of Chuchungbeo. Among livestock manure type, plant height was longer in order of liquid swine manure (LSM) > composted swine manure (CSM) > chemical fertilizer (CF) > composted cattle manure (CCM). Number of branch on Chuchungbeo had more than that of Suwon 468. Among livestock manure type, number of branch had more in order of LSM > CSM > CF > CCM. DM yield of whole crop rice (WCR) was affected by various types of livestock manure application and increased in order CSM > CCM = LSM. DM yield on the effects of application level of LSM was highest in LSM 75% + CF 25%. Plant diseases such as rice blast, damage by insect, smut, sheath blight occurred in LSM and CSM and there was not significantly different among application level of LSM. The nitrogen content of WCR by CSM was the highest of all treatments and the ripened ratio by CSM was in contrary order. Moreover the feed value of WCR was not significantly different among treatments. Soil pH, organic matter and total nitrogen was not different by LSM application whereas phosphorus content increased by LSM application. Cu and Zn content increased by LSM and CSM application and were not different by CCM as compared to control plots.

Studies on the Effects of Rice Plant on the Changes of Materials in Submerged Paddy Soils (수도재배(水稻栽培)가 답상태토양(畓狀態土壤)의 물질변화(物質變化)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.71-97
    • /
    • 1974
  • Many studies on the changes of the materials in the water-logged paddy soil have been reported, but there will be several problems to apply them on the field soil. The main differences between the method of soil packed in beaker or column tube to that of natural field furrow slice are with or without of the rice root and the effect of water percolation. On the other hand, the mechanism of the water percolation on the changes of material in the natural field furrow slice are gradually understood. The purpose of this experiment is to know the effect of the rice cultivation on the chemical and physical changes of material in the water-logged paddy soil. Obtained results are as follows. 1. The physical and chemical changes on the water-logged paddy soil in the non-planted control-plot were nearly the same as the beaker or column tube experiment, while in the planted plot, slightly altered patterns were observed. 2. The relation between the number of tillers and total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, Fe and Mn in the leachate showed very high significance. T hisresult showed that the leaching of those cation was promoted by growing of the rice r- of the rice root. 3. On the other hand, the concentration of the potassium, silica and phosphorus in leachates was gradually decreased and that of $NH_4$-N could not detect after the stage of active tillering. These facts revealed that such components were absorbed by rice plant. 4. The highly significant correlation between the number of tillers and the concentration of the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn in the percolated water was observed except that of $Mg^{{+}{+}}$. It was also showed that the rice root promoted the leaching of those cation. 5. The very high significance in the correlation between $HCO_3{^-}$ and the number of tillers indicated that the higher activity of the rice root was, the more $HCO_3{^-}$ concentration in the leachate was increased. 6. The relationship between the $HCO_3{^-}$ and the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn was appeared very highly significant. $HCO_3{^-}$, the metabolite of the rice root, promoted the leaching of $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$ and Mn. This fact might be a result that these cations were leached as the form of bicarbonate. 7. The iron in the leachate was the form of $Fe^{{+}{+}}$ and the correlation between $Fe^{{+}{+}}$ and $HCO_3{^-}$ was very highly significant. This result indicated that it seemed to be ferrous bicarbonate when it is leached out. 8. In the rhizosphere, ferrous iron was decreased gradually and the concentration of glucose was as high as 2 to 3 times in comparison with the other parts of the soil. These facts were the same as the previous reports in which rhizosphere was oxidized by the oxigen excreted from the root, and was enriched by the organic matter which was also excreted from the root and accumulated residues of the root. 9. ${\beta}$-Glucosidase and phosphatase activity in the rhizosphere was higher than that of the other parts of the soil. This facts might be attributed to the vigorous activity of microorganism in the rhizosphere where glucose concentration was high. 10. The pH in the leachate of the planted plot was lower than that of control, and the Eh on the planted soil was elevated in the last stage.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF