• 제목/요약/키워드: Soil nutrient

검색결과 1,180건 처리시간 0.031초

Effects of Long-Term Fertilization for Cassava Production on Soil Nutrient Availability as Measured by Ion Exchange Membrane Probe and by Corn and Canola Nutrient Uptake

  • Hung T. Nguyen;Anh T. Nguyen;Lee, B.W.;J. Schoenau
    • 한국작물학회지
    • /
    • 제47권2호
    • /
    • pp.108-115
    • /
    • 2002
  • The effects of long-term fertilization on soil properties and nutrient availability are not well documented for cassava cultivation in Vietnam. In 1990, a field research plots were established with 12 treatments to test the effect of different rates of nitrogen (N), phosphorus (P) and potassium (K) on soil properties in Acrisols at Thai Nguyen University in Northern Vietnam. In 1999, composite soil samples (0 to 20cm depth) were collected from eight selected plots for measurements of nutrient supply rates by ion exchange membrane probes and for growing corn and canola in a growth chamber with and without added lime. Generally, long-term nitrogen (N) fertilization increased available N supply rates but decreased available potassium (K) and magnesium (Mg). Long-term phosphorus(P) applications increased canola N, calcium (Ca) and Mg uptake. Canola P uptake increased with increased P rates only when lime was added. Long-term K applications increased canola N, K, Ca, Mg uptake but only significantly increased corn N uptake. Liming significantly increased uptake of N, P, K, Ca, Mg and S for both corn and canola. However, N $H_{4-}$N, K and Mg soil supply rates were reduced when lime was added, due to competition between Ca from the added lime and other nutrients.

논토양 화학특성 변화와 양분공급력과의 관계 (Dependence of Nutrient Supplying Capacity on Chemical reactions of Paddy Soil)

  • 김유학;김명숙;강성수;전희중
    • 한국토양비료학회지
    • /
    • 제42권Spc호
    • /
    • pp.33-39
    • /
    • 2009
  • 논토양에서 지속가능한 농업생산 및 환경보호를 위한 양분관리는 토양의 화학반응들에 따른 지표들을 활용하는 것이다. 이 연구는 동일비료 영년시험 결과와 2000년부터 2002년까지 수행된 논토양 유형별 질소수준 시험 결과 등을 토대로 하여, 논토양의 화학작용 및 이와 관련된 양분공급력 지표들을 조사하였다. 논토양의 화학작용은 영양성분의 흡탈착 및 유기물질의 분해를 통한 수소, 전자, 이산화탄소의 생성작용과 이들 물질에 의한 화학작용 등으로 구성되었다. 이러한 토양의 화학작용을 고려한 양분공급력 지표들은 다음과 같았다. 질소의 공급력 지표는 토양유기물 또는 토양단백질이었으며, 인산의 공급력 지표는 유효인산함량이었고, 칼륨의 공급력 지표는 양이온교환용량과 치환성 양이온함량이었다. 한국에서는 논토양의 시비 추천식은 이러한 양분공급력 지표들을 사용하여 설정한 것으로 나타나 환경을 보전하면서 농업생산을 지속적으로 유지할 수 있는 것으로 판단된다.

오수처리수 관개방법에 따른 수도 생육과 토양내 영양물질 변화 (Rice growth and Nutrient change in paddy soil with reclaimed sewage irrigation)

  • 윤춘경;황하선;우선호
    • 한국농공학회지
    • /
    • 제43권6호
    • /
    • pp.154-162
    • /
    • 2001
  • This study was performed to examine the rice growth and nutrient change in paddy soil with reclaimed sewage irrigation. Total nitrogen and total phosphorus in the experimental system were analyzed before and after rice culture. The experiment lasted three consecutive years, and this paper presents results of the last year. Additional supply of nutrients to the rice culture by reclaimed sewage irrigation was significant and it increased the yield. Nutrient uptake by rice plant increased with more nutrient supplied, however. there was limit in plant uptake. Nutrient accumulation occurred in the soil and it was more apparent for the phosphorus where most of the remaining quantity was accumulated while substantial amount of nitrogen was lost during the growing season. This study suggested that additional nutrient supply by reclaimed sewage irrigation might be a supplemental benefit to the rice culture, and it can help the fertilization management. However, long term effects of continual reclaimed sewage irrigation should be assessed carefully including nutrient mass balance in the paddy rice culture system.

  • PDF

시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향 (Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil)

  • 임정은;하상건;이예진;윤혜진;조민지;이덕배;성좌경
    • 농업과학연구
    • /
    • 제42권4호
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • 한국토양비료학회지
    • /
    • 제48권4호
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

Furrow Cover Effects of Black Non-woven Fabric on Reduction of Nitrogen and Phosphorus Discharge from Upland Soil Used for Red Pepper Cultivation

  • Hong, Seung Chang;Kim, Min Kyeong;Jung, Goo Buk;So, Kyu Ho
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.671-676
    • /
    • 2015
  • Control of surface runoff from upland soil is essential to reduce nonpoint source pollution. The use of non-woven fabric as a soil cover can be helpful to control surface runoff. The field experiment was conducted to evaluate the furrow cover effects of black non-woven fabric on the nutrient discharge from upland soil used for red pepper cultivation. The experimental plots consisted of chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) treatment. Each nutrient material treatment plot has control (no furrow cover (NFC)) and black non-woven fabric cover treatment, respectively. The amount of nutrient application was chemical fertilizer of $190-112-149(N-P_2O_5-K_2O)kgha^{-1}$, cow manure compost of $29.5tonha^{-1}$, and pig manure compost of $7.9tonha^{-1}$ as recommended amount after soil test for red pepper cultivation. Compared to control (NFC), furrow cover treatment with black non-woven fabric reduced the amount of T-N discharge by 50% at CF treatment, 36.9% at CMC treatment, and 44.8% at PMC treatment. Furrow cover treatment with black non-woven fabric reduced the amount of T-P discharge by 37.1% at CF treatment, 49.9% at CMC treatment, and 63.4% at PMC treatment compared to control (NFC). The production of red pepper did not show significant difference. There was no weed occurring in furrow cover treatment plots with black non-woven fabric. Results from this study showed that the furrow cover with black non-woven fabric could play a significant role in reduce nutrient discharge from upland soil used for red pepper cultivation.

이산화질소 가스에 의한 무화과 나무의 피해 양상 (The Toxicity of Nitrogen Dioxide Gas on Fig Plant)

  • 김유학;최병렬;김명숙
    • 한국토양비료학회지
    • /
    • 제43권6호
    • /
    • pp.978-980
    • /
    • 2010
  • This study was conducted to observe the cause of injury of fig plant. Nitrogen dioxide gas can be evolved at low pH or reduced in soil. Fig plant cultivated with nutrient solution was wilted or withered. Injury symptom for nutrient solution containing nitrous acid was worse as pH of soil decreased. However, increase in pH of nutrient solution treated with increasing $Ca(OH)_2$ solution prevented nutrient solution from producing nitrogen dioxide gas. Recovery of the fig plant by pH increase indicated that the cause of injury was nitrogen dioxide gas.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Soil Organic Matter and Nutrient Accumulation at the Abandoned Fields

  • Park, Byung Bae;Shin, Joon Hwan
    • 한국산림과학회지
    • /
    • 제97권5호
    • /
    • pp.492-500
    • /
    • 2008
  • Since vegetation significantly influences on soil carbon and nutrient storage, vegetation change has been focused on terrestrial carbon and nutrient cycling studies. In this study we investigated soil carbon and major nutrient capitals at the abandoned fields, which had different vegetation composition: a three year abandoned field ($AGR_3$), two ten years abandoned fields ($PD_{10}$ dominant with Pinus densiflora and Fraxinus rhynchophylla and $PM_{10}$ dominant with Populus maximowiczii), and an over sixty years forest ($FOR_{60}$). which were located at Hongcheon-gun, Kangwon-do, South Korea. Both main effects for organic matter (%) were significant: shallow soil > deep soil and $FOR_{60}=PM_{10}$ > $AGR_3=PD_{10}$. Nitrogen concentrations at $PM_{10}$ were the highest, while the lowest at $PD_{10}$. Available phosphorus concentrations were the highest at $PD_{10}$, which were over 10 times of site $FOR_{60}$ and $AGR_3$ at 0-10 cm soil depth. The average organic matter ($173Mg\;ha^{-1}$) and nitrogen contents ($10Mg\;ha^{-1}$) of $PM_{10}$ and $FOR_{60}$ were higher than those of $AGR_3$ and $PD_{10}$ by 57% and 42%, respectively. The available phosphorus contents above 30 cm mineral soil at $PD_{10}$ ($3.8Mg\;ha^{-1}$) and $PM_{10}$ ($1.3Mg\;ha^{-1}$) were over 120 times and 40 times more than at $FOR_{60}$. Calcium ($3.7Mg\;ha^{-1}$) and magnesium contents ($2.8Mg\;ha^{-1}$) at $FOR_{60}$ were twice or three times higher than at other sites. Organic matter amounts in 0-10 cm and 10-30 em soil had significant positive relationships with nitrogen, calcium, and magnesium contents, but not available phosphorus and potassium contents. This study could not identify the effect of chronological factor and vegetation composition on soil carbon and nutrient capital owing to diverse topography as well as limited study sites. However, this study suggests the accuracy of investigation for regional carbon and nutrient sequestration can be achieved by considering the period of abandoned time on the fields and the land use types. These results may suggest the benefits of forest restoration for soil carbon and nutrient accumulation in marginal agricultural lands in South Korea.

육상식물 중심의 영양소 순환 경로와 부식과정에 의한 양성 되먹임과정, 그리고 영양소 이용효율 (Alternative Nutrient Cycles for Terrestrial Plants, Positive Feedbacks through Detrital Processes, and Nutrient Use Efficiency)

  • Lee, Dowon;Thomas P. Burns
    • The Korean Journal of Ecology
    • /
    • 제16권1호
    • /
    • pp.115-131
    • /
    • 1993
  • Six nutrient cycles involving terrestrial plants are identified and characterized. Plants affect biotic and abiotic cycles through their effects on soil properties. They determine their internal nutritional status and nutrient concentrations in their environment via internal and external cycles. Contributions of organic matter to mycorrhizal, trophic, and detrital mediated external cycles and alterations of nutrient concentrations by plants can promote positive feedbacks leading to increased availability and retention of soil nutrients in open systems. Recognizing alternative cycles through plants leads to a definition of nutrient use efficiency for ecosystems: the ratio of system production to nutrient content of organic matter. A simple graph model to predict changes of nutrient use efficiency during primary succession is then presented.

  • PDF