• Title/Summary/Keyword: Soil moisture prediction

Search Result 121, Processing Time 0.037 seconds

Identifying Factors for Corn Yield Prediction Models and Evaluating Model Selection Methods

  • Chang Jiyul;Clay David E.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2005
  • Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity $(EC_a)$, slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with $\Delta_i\leq2$ were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and $EC_a$ were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.

Regionalized Regression Model for Monthly Streamflow in Korean Watersheds (韓國河川의 月 流出量 推定을 위한 地域化 回歸模型)

  • Kim, Tai-Cheol;Park, Sung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.106-124
    • /
    • 1984
  • Monthly streanflow of watersheds is one of the most important elements for the planning, design, and management of water resources development projects, e.g., determination of storage requirement of reservoirs and control of release-water in lowflow rivers. Modeling of longterm runoff is theoretically based on water-balance analysis for a certain time interval. The effect of the casual factors of rainfall, evaporation, and soil-moisture storage on streamflow might be explained by multiple regression analysis. Using the basic concepts of water-balance and regression analysis, it was possible to develop a generalized model called the Regionalized Regression Model for Monthly Streamflow in Korean Watersheds. Based on model verification, it is felt that the model can be reliably applied to any proposed station in Korean watersheds to estimate monthly streamflow for the planning, design, and management of water resources development projects, especially those involving irrigation. Modeling processes and properties are summarized as follows; 1. From a simplified equation of water-balance on a watershed a regression model for monthly streamflow using the variables of rainfall, pan evaporation, and previous-month streamflow was formulated. 2. The hydrologic response of a watershed was represented lumpedly, qualitatively, and deductively using the regression coefficients of the water-balance regression model. 3. Regionalization was carried out to classify 33 watersheds on the basis of similarity through cluster analysis and resulted in 4 regional groups. 4. Prediction equations for the regional coefficients were derived from the stepwise regression analysis of watershed characteristics. It was also possible to explain geographic influences on streamflow through those prediction equations. 5. A model requiring the simple input of the data for rainfall, pan evaporation, and geographic factors was developed to estimate monthly streamflow at ungaged stations. The results of evaluating the performance of the model generally satisfactory.

  • PDF

Applicability Assessment of Hydrological Drought Outlook Using ESP Method (ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가)

  • Son, Kyung Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.581-593
    • /
    • 2015
  • This study constructs the drought outlook system using ESP(Ensemble Streamflow Prediction) method and evaluates its utilization for drought prediction. Historical Runoff(HR) was estimated by employing LSM(Land Surface Model) and the observed meteorological, hydrological and topographical data in South Korea. Also Predicted Runoff(PR) was produced for different lead times(i.e. 1-, 2-, 3-month) using 30-year past meteorological data and the initial soil moisture condition. The HR accuracy was higher during MAM, DJF than JJA, SON, and the prediction accuracy was highly decreased after 1 month outlook. SRI(Standardized Runoff Index) verified for the feasibility of domestic drought analysis was used for drought outlook, and PR_SRI was evaluated. The accuracy of PR_SRI with lead times of 1- and 2-month was highly increased as it considered the accumulated 1- and 2-month HR, respectively. The Correlation Coefficient(CC) was 0.71, 0.48, 0.00, and Root Mean Square Error(RMSE) was 0.46, 0.76, 1.01 for 1-, 2- and 3-month lead times, respectively, and the accuracy was higher in arid season. It is concluded that ESP method is applicable to domestic drought prediction up to 1- and 2-month lead times.

Prediction of Chemical Organic Composition of Manure by Near Infrared Reflectance Spectroscopy

  • Amari, Masahiro;Fukumoto, Yasuyuki;Takada, Ryozo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1265-1265
    • /
    • 2001
  • The organic materials included in excreta of livestock are important resources for organic manure and for improving soil quality, although there is still far from effective using. One reason for this is still unclearly standard of quality for evaluation of manure made from excreta of livestock. Therefore, the objective of this study is to develop rapid and accurate analytical method for analyzing organic compositions of manure made from excreta of livestock, and to establish quality evaluation method based on the compositions predicted by near infrared reflectance spectroscopy (NIRS). Sixteen samples of manure, each eight samples prepared from two treatments, were used in this study. The manure samples were prepared by mixing 560 kg feces of swine,60 kg sawdust with moisture content was adjusted to be 65%. The mixture was then keep under two kinds of shelter, black and clear sheets, as a treatment on the effect of sunlight. Samples were taken in every week (form week-0 to 7) during the process of manure making. Samples were analyzed to determine neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) by detergent methods, and organic cell wall (OCW) and fibrous content of low digestibility in OCW (Ob) by enzymatic methods. Biological oxygen demand (BOD) was analyzed by coulometric respirometer method. These compositions were carbohydrateds and lignin that were hardly digested. Spectra of samples were scanned by NIR instrument model 6500 (Pacific Scientific) and read over the range of wavelength between 400 and 2500nm. Calibration equations were developed using eight manure samples collected from black sheet shelter, while prediction was conducted to the other eight samples from clear sheet shelter. Accuracy of NTRS prediction was evaluated by correlation coefficients (r), standard error of prediction (SEP) and ration of standard deviation of reference data in prediction sample set to SEP (RPD). The r, SEP and RPD value of forage were 0.99, 0.69 and 7.6 for ADL, 0.96, 1.03 and 4.1 for NDF, 0.98, 0.60 and 4.9 for ADF, 0.92, 1.24 and 2.6 for Ob, and 0.91, 1.02 and 7.3 for BOD, respectively. The results indicated that NIRS could be used to measure the organic composition of forage used in manure samples.

  • PDF

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.

Drought Analysis and Assessment by Using Land Surface Model on South Korea (지표수문해석모형을 활용한 국내 가뭄해석 적용성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Chung, Jun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.667-681
    • /
    • 2011
  • The objective of this study is to evaluate the applicability of a Land Surface Model (LSM) for drought analysis in Korea. For evaluating the applicability of the model, the model was calibrated on several upper dam site watersheds and the hydrological components (runoff and soil moisture) were simulated over the whole South Korea at grid basis. After converting daily series of runoff and soil moisture data to accumulated time series (3, 6, 12 months), drought indices such as SRI and SSI are calculated through frequency analysis and standardization of accumulated probability. For evaluating the drought indices, past drought events are investigated and drought indices including SPI and PDSI are used for comparative analysis. Temporal and spatial analysis of the drought indices in addition to hydrologic component analysis are performed to evaluate the reproducibility of drought severity as well as relieving of drought. It can be concluded that the proposed indices obtained from the LSM model show good performance to reflect the historical drought events for both spatially and temporally. From this point of view, the LSM can be useful for drought management. It leads to the conclusion that these indices are applicable to domestic drought and water management.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF