• Title/Summary/Keyword: Soil moisture prediction

Search Result 121, Processing Time 0.031 seconds

A study on the impact on predicted soil moisture based on machine learning-based open-field environment variables (머신러닝 기반 노지 환경 변수에 따른 예측 토양 수분에 미치는 영향에 대한 연구)

  • Gwang Hoon Jung;Meong-Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.47-54
    • /
    • 2023
  • As understanding sudden climate change and agricultural productivity becomes increasingly important due to global warming, soil moisture prediction is emerging as a key topic in agriculture. Soil moisture has a significant impact on crop growth and health, and proper management and accurate prediction are key factors in improving agricultural productivity and resource management. For this reason, soil moisture prediction is receiving great attention in agricultural and environmental fields. In this paper, we collected and analyzed open field environmental data using a pilot field through random forest, a machine learning algorithm, obtained the correlation between data characteristics and soil moisture, and compared the actual and predicted values of soil moisture. As a result of the comparison, the prediction rate was about 92%. It was confirmed that the accuracy was . If soil moisture prediction is carried out by adding crop growth data variables through future research, key information such as crop growth speed and appropriate irrigation timing according to soil moisture can be accurately controlled to increase crop quality and improve productivity and water management efficiency. It is expected that this will have a positive impact on resource efficiency.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Prediction of Soil Distribution Using Digital Terrain Indices (수치 지형인자를 활용한 토양수분분포 예측)

  • Lee, Hak-Su;Kim, Gyeong-Hyeon;Han, Ji-Yeong;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.391-401
    • /
    • 2001
  • Several curvature parameters, solar radiation parameter and topographic flow generation parameters have been summarized and calculated to predict the spatial distribution of soil moisture content. The spatial distribution of soil moisture data can be obtained using Global Positioning System(GPS) and portable soil moisture monitoring equipment, Theta-Probe. Correlation analysis has been performed between the parameters of soil moisture prediction and measured data of soil moisture. Multiple regression analysis of soil moisture prediction shows the potential capability and limitations of existing methods of digital terrain analysis.

  • PDF

Measurements of dielectric constants of soil to develop a landslide prediction system

  • Rhim, Hong Chul
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2011
  • In this study, the measurements of the dielectric constants of soil at 900 MHz and 1 GHz were made to relate those properties to the moisture content of the soil. This study's intention was to use the relationship between the dielectric constant and the moisture content to develop a landslide prediction system. By monitoring the change of the moisture content within the soil using ground penetrating radar (GPR) systems in the field, the possibility of a landslide is expected to be detected. To establish a database for the dielectric constants and the moisture content, the measurements of soil samples were made using both an open-ended dielectric coaxial probe and the GPR. Based on the measurement results, correlations between the GPR and reflector for each frequency at 900 MHz and 1 GHz were found for the dielectric constants and the moisture content. Finally, the mechanism of the measurement device to be implemented in the field is suggested.

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

Application of Land Initialization and its Impact in KMA's Operational Climate Prediction System (현업 기후예측시스템에서의 지면초기화 적용에 따른 예측 민감도 분석)

  • Lim, Somin;Hyun, Yu-Kyung;Ji, Heesook;Lee, Johan
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.

A Study on the forecasting of soil moisture content in our country (우리나라 토양에 대한 수분함량예측에 관한 연구)

  • Kang, J.W.;Cho, S.B.;Kang, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2380-2382
    • /
    • 1999
  • An Ampacity of a power cable depends on the soil thermal property, especially the soil thermal resistivity. Also, The soil thermal resistivity depends on the soil moisture contents in soil surrounding the power cable. This paper propose the prediction algorithm of the soil moisture contents using the Thornthwaite theory.

  • PDF

Soil moisture prediction using a support vector regression

  • Lee, Danhyang;Kim, Gwangseob;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.401-408
    • /
    • 2013
  • Soil moisture is a very important variable in various area of hydrological processes. We predict the soil moisture using a support vector regression. The model is trained and tested using the soil moisture data observed in five sites in the Yongdam dam basin. With respect to soil moisture data of of four sites-Jucheon, Bugui, Sangieon and Ahncheon which are used to train the model, the correlation coefficient between the esimtates and the observed values is about 0.976. As the result of the application to Cheoncheon2 for validating the model, the correlation coefficient between the estimates and the observed values of soil moisture is about 0.835. We compare those results with those of artificial neural network models.

The Resolution of the Digital Terrain Index for the Prediction of Soil Moisture (토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.251-261
    • /
    • 2003
  • The resolution issue of various soil moisture prediction parameters such as wetness index and curvatures is addressed. The sensitivities of various index are discussed on the base of the statistical aspects. The statistical analysis of three flow determination algorithms on the DEM is performed. The upslope area associated with SFD algorithm appear to more sensitive than the parameters of the other algorithms(MFD, DEMON). The wetness index shows relatively less variation both in resolution and the calculation Procedures.

A Study on Soil Moisture Estimates Performance Using Various Land Surface Models (다양한 지표모형을 활용한 토양수분 예측 성능 평가 연구)

  • Jang, Ye-Geun;Sin, Seoung-Hun;Lee, Tae-Hwa;Jang, Won-Seok;Shin, Yong-Chul;Jang, Keun-Chang;Chun, Jung-Hwa;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.79-89
    • /
    • 2022
  • Soil moisture is significantly related to crop growth and plays an important role in irrigation management. To predict soil moisture, various process-based model has been developed and used in the world. Various models (Land surface model) may have different performance depending on the model parameters and structures that causes the different model output for the same modeling condition. In this study, the three land surface models (Noah Land Surface Model, Soil Water Atmosphere Plant, Community Land Model) were used to compare the model performance (soil moisture prediction) and develop the multi-model simulation. At first, the genetic algorithm was used to estimate the optimal soil parameters for each model, and the parameters were used to predict soil moisture in the study area. Then, we used the multi-model approach based on Bayesian model averaging (BMA). The results derived from this approach showed a better match to the measurements than the results from the original single land surface model. In addition, identifying the strengths and weaknesses of the single model and utilizing multi-model methods can help to increase the accuracy of soil moisture prediction.