• 제목/요약/키워드: Soil moisture change

검색결과 314건 처리시간 0.027초

Assessment of Noah land surface model-based soil moisture using GRACE-observed TWSA and TWSC (GRACE 관측 TWSA와 TWSC를 활용한 Noah 지면모형기반 토양수분 평가)

  • Chun, Jong Ahn;Kim, Seon Tae;Lee, Woo-Seop;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • 제53권4호
    • /
    • pp.285-291
    • /
    • 2020
  • The Noah 3.3 Land Surface Model (LSM) was used to estimate the global soil moisture in this study and these soil moisture datasets were assessed against satellite-based and reanalysis soil moisture products. The Noah 3.3 LSM simulated soil moistures in four soil layers and root-zone soil moistures defined as a depth-weighted average in the first three soil layers (i.e., up to 1.0 m deep). The Noah LSM soil moisture products were then compared with a satellite-based soil moisture dataset (European Space Agency Climate Change Initiatives (ESA CCI) SM v04.4) and reanalysis soil moisture datasets (ERA-interim). In addition, the five major basins (Yangtze, Mekong, Mississippi, Murray-Darling, Amazon) were selected for the assesment with the Gravity Recovery and Climate Experiment (GRACE)-based Total Water Storage Anomaly (TWSA) and TWS Change (TWSC). The results revealed that high anomaly correlations were found in most of the Asia-Pacific regions including East Asia, South Asia, Australia, and Noth and South America. While the anomaly correlations in the Murray-Darling basin were somewhat low, relatively higher anomaly correlations in the other basins were found. It is concluded that this study can be useful for the development of soil moisture based drought indices and subsequently can be helpful to reduce damages from drought by timely providing an efficacious strategy.

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

Change in concentration and bioactivity of soil-applied pretilachlor under various soil moisture conditions (다양한 토양수분조건에 처리한 pretilachlor의 농도 및 활성 변화)

  • Lee, Do-Jin
    • The Korean Journal of Pesticide Science
    • /
    • 제3권2호
    • /
    • pp.81-85
    • /
    • 1999
  • Concentration change of soil-applied pretilachlor (2-chloro-2',6'-diethyl- N-2-propoxyethyl)-actanilide) was investigated under upland condition with various soil moisture contents ranging from 50 to 80%(water content by weight). Following pretilachlor from each soil solution was extracted by centrifugation using double tubes, its concentration was determined by HPLC. Pretilachlor concentration in the soil solutions were almost the same under various soil moisture conditions. However, the total amount of pretilachlor increased as the soil moisture content increased. With increasing soil moisture content, the bioactivity of soil-applied pretilachlor on inhibiting the growth of Echinochloa ultilis Ohwi et Yabuno and the absorption of $^{14}C$-pretilachlor in its plants were also enhanced. Our results demonstrate that the absorption of pretilachlor in plants varies with soil moisture content and thus the bioactivity of soil-applied pretilachlor on inhibiting plant growth is different under various soil moisture conditions at the same dosage based on air-dried weight.

  • PDF

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • 제30권3호
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Remote Sensing of Soil Moisture Change Using a Differential Interferometry Technique (차분 간섭 기법을 이용한 지표면 수분함유량 변화 탐지)

  • Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제24권4호
    • /
    • pp.459-465
    • /
    • 2013
  • This paper presents a differential interferometry technique for soil moisture change detection by measuring surface-height variation. COSMO-SkyMed SAR images were used to verify the DInSAR(differential interferometric SAR) technique. The soil penetration depth changes according to soil moisture, that causes phase change of the received signal. The height of soil surface and its displacement can be detected by a radar interferometry technique using phase difference of two received signals. To retrieve displacement variation, one of three SAR images is used as a reference image. Reference image and other two images are processed by the differential interferometry technique in the same area. The soil moisture was measured for the test sites to verify the DInSAR technique. The penetration depth is calculated by using the in-situ measured soil moisture data and it is compared with the displacement values acquired by the DInSAR technique.

Analysis of Fuel Moisture Contents Change after Precipitation in the Pine tree stand during Forest Fire Period in the East sea region (영동지역 소나무림에서 강우 후 임내 연료습도 변화분석)

  • Lee, Si-Young;Lee, Myung-Woog;Kwon, Chun-Geun;Yeom, Chan-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.149-152
    • /
    • 2008
  • This study is the result between the variation of fuel moisture and the risk of forest fire through measuring the change of moisture containing ratio on-site and its average analysis for fallen leaves layer, humus layer, and soil layer in the forest. The measurement was performed on six days from the day after a rainfall. The fuel moisture on-site was measured on the day when the accumulated rainfall was above 5.0mm, and the measurements was 2 times in spring and 1 time in fall. From the pine forest which were distributed around Samcheok and Donghae in Kangwondo, three regions were selected by loose, medium, and dense forest density, and the fuel moisture was measured on fallen leaves layer, humus layer, and soil layer in the forest. for six days from the day after a rainfall. The study showed that the moisture containing ratio converged on 3 - 4 days in spring and fall for fallen leaves layer, and the convergence was made more than six days in spring and fall for the humus layer. In the other case of soil layer, the variation of moisture containing ratio after rainfall was not distinguishable regardless of season.

  • PDF

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • 제3권2호
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF

Mechanical Characteristics of Reinforced Soil(I) -Cement Reinforced Soil- (보강 혼합토의 역학적 특성(I) -시멘트 혼합토-)

  • Song, Chang-Seob;Lim, Seong-Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제5권6호
    • /
    • pp.9-13
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with cement. And confirm the reinforcing effects with admixture such as cement. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and cement reinforced soil. In order to determine proper moisture content and mixing ratio, pilot test was carried out for soil and cement reinforced soil. And the mixing ratio of cement admixture was fixed 3%, 6%, 9% and 12% by the weight of dry soil. As the experimental results, the maximum dry unit weight(${\gamma}_{dmax}$) was increased with the mixing ratio and then shown the peak at 10% reinforced soil, but the optimum moisture content(OMC) and the volume change was decreased with the ratio increase. And the compressive strength volume change was decreased with mixing ratio increased.

Measurements of dielectric constants of soil to develop a landslide prediction system

  • Rhim, Hong Chul
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.319-328
    • /
    • 2011
  • In this study, the measurements of the dielectric constants of soil at 900 MHz and 1 GHz were made to relate those properties to the moisture content of the soil. This study's intention was to use the relationship between the dielectric constant and the moisture content to develop a landslide prediction system. By monitoring the change of the moisture content within the soil using ground penetrating radar (GPR) systems in the field, the possibility of a landslide is expected to be detected. To establish a database for the dielectric constants and the moisture content, the measurements of soil samples were made using both an open-ended dielectric coaxial probe and the GPR. Based on the measurement results, correlations between the GPR and reflector for each frequency at 900 MHz and 1 GHz were found for the dielectric constants and the moisture content. Finally, the mechanism of the measurement device to be implemented in the field is suggested.