• Title/Summary/Keyword: Soil liquefaction

Search Result 235, Processing Time 0.025 seconds

A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones (기존의 액상화 평가기법 밀 그 적용성에 관한 연구)

  • 박인준;신윤섭;최재순;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF

Assessment of liquefaction potential of the Erzincan, Eastern Turkey

  • Duman, Esra Subasi;Ikizler, Sabriye Banu;Angin, Zekai;Demir, Gokhan
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.589-612
    • /
    • 2014
  • This study includes determination of liquefaction potential in Erzincan city center. Erzincan Province is situated within first-degree earthquake zone on earthquake map of Turkey. In this context, the earthquake scenarios were produced using the empirical expressions. Liquefaction potential for different earthquake magnitudes (6.0, 6.5, 7.0) were determined. Liquefaction potential was investigated using Standard Penetration Test (SPT). Liquefaction potential analyses are determined in two steps: geotechnical investigations and calculations. In the first steps, boreholes were drilled to obtain disturbed and undisturbed soil samples and SPT values were obtained. Laboratory tests were made to identify geotechnical properties of soil samples. In the second step, liquefaction potential analyses were examined using two methods, namely Seed and Idriss (1971), Iwasaki et al. (1981). The liquefaction potential broadly classified into three categories, namely non-liquefiable, marginally liquefiable and liquefiable regions. Additionally, the liquefaction potential index classified into four categories, namely non-liquefiable, low, high and very high liquefiable regions. In order to liquefaction analysis complete within a short time, MATLAB program were prepared. Following the analyses, liquefaction potential index is investigated by Iwasaki et al. (1982) methods. At the final stage of this study, liquefaction potential maps and liquefaction potential index maps of the all study area by using IDW (inverse distance weighted) interpolation method in Geostatistical Analyst Module of ArcGIS 10.0 Software were prepared for different earthquake magnitudes and different depths. The results of soil liquefaction potential were evaluated in ArcGIS to map the distributions of drillings with liquefaction potential. The maps showed that there is a spatial variability in the results obtained which made it difficult to clearly separate between regional areas of high or low potential to liquefy. However, this study indicates that the presence of ground water and sandy-silty soils increases the liquefaction potential with the seismic features of the region.

Characteristic of Wet Soil Concrete according to Liquefaction Red mud Addition Ratio (액상 레드머드 첨가율에 따른 습식 흙콘크리트의 특성)

  • Kang, Hye Ju;Hwang, Byoung Il;Woo, Mi Kyung;Lee, young Won;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.81-82
    • /
    • 2018
  • In this paper, we investigate the characteristics of wet soil concrete according to the addition ratio of liquefaction red mud addition rate by liquefying red mud. as a result, the compressive strength decreased and the water absorption ratio increased as the liquefaction red mud addition rate increased.

  • PDF

Liquefaction Hazard Map Based on in Pohang Under Based on Earthquake Scenarios (지진시나리오 기반의 포항지역 액상화위험도 작성 연구)

  • Baek, Woo Hyun;Choi, Jae Soon;Ahn, Jae-Kwang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-224
    • /
    • 2018
  • The The purpose of this study is to investigate the actual liquefaction occurrence site in Pohang area and to analyze the ground characteristics of Pohang area using the data of the National Geotechnical Information DB Center and to calculate the liquefaction potential index. Based on the results, the distribution of soil classification in Pohang area and the risk of liquefaction under various earthquake accelerations were prepared. As a result of the study, soils in Pohang has the soil characteristics that can cause the site amplification phenomenon. In the analysis through liquefaction hazard maps under earthquake scenarios, it is found that the liquefaction occurred in the area of Heunghae town is more likely to be liquefied than other areas in Pohang. From these results, it is expected that the study on the preparation of liquefaction hazard maps will contribute to the preparation of countermeasures against liquefaction by predicting the possibility in the future.

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land (준설매립지반의 세립토가 액상화 강도에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Park, Sang-Jun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.269-284
    • /
    • 2016
  • Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.

Information Geo-Technology for Seismic Analysis (내진해석을 고려한 정보화 시공)

  • Park, Inn-Joon;Kim, Soo-Il;Seo, Kyung-Bum;Park, Seong-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.92-104
    • /
    • 2005
  • Over the past decade, major advances have occurred in both understanding and practice with regard to assessment and mitigation of hazard area associated with seismically induced soil liquefaction. In this paper, assessment of liquefaction resistance of soil are reviewed from the recent researches. In addition site characteristics investigation methods and tests for seismic design and liquefaction analysis are reviewed. Finally, introduction and characteristics of remedial measures against soil liquefaction are reviewed briefly.

  • PDF

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.