• Title/Summary/Keyword: Soil flux measurements

Search Result 32, Processing Time 0.024 seconds

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$ (챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

Characterization of NOx Emission from Soils in Southwest Korea and Their Atmospheric Chemistry (질소산화물의 토양배출량 추정과 지구 환경에 미치는 대기화학적 특성 연구)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.451-461
    • /
    • 1997
  • The soil NO flux measurements in Korea were made from 17 May 1997 to 16 June 1997 on grass land at Kunsan National University in southwestern Korea by using flow-through chamber technique. The experiment was conducted in an effort to determine the role of natural emissions of NO on rural atmospheric photochemistry, and to understand the soil NO emission mechanism with respect to soil parameters. Soil NO fluxes were measured every minutes and averaged in every 15 minutes as well as soil temperature. Soil samples were analyzed for $NO_3^-, NH_4^+$, and moisture in soil. Soil nitrate was not detected in most times, and total N-containing was limited in site soils. There was a optimum range of soil moisture and temperature for soil NO flux. The overall average of soil NO emission rates were found to be 1.30 $\pm 0.92 ngNm^{-2}s^{-1}$ (n=1219), and ranged from 0.01 ngNm^{-2}s^{-1}$ to 5.62 ngNm^{-2}s^{-1}$. Diurnal variation of soil NO emission was typical, which was in higher level during daytime, and was in lower level over the night. NO flux showed a strong soil temperature dependence $(r^2=0.78)$, but not with soil moisture and soil N-containing during this experimental period; NO fluxes increased exponentially as soil temperature increased. In order to assure the relevant relationship between soil NO flux and the soil parameters, long-term soil flux measurement on different types of land use should be planned and conducted continuously.

  • PDF

Estimation of the Number of Sampling Points Required for the Determination of Soil CO2 Efflux in Two Types of Plantation in a Temperate Region

  • Lee, Na-Yeon(Mi-Sun);Koizumi, Hiroshi
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2009
  • Soil $CO_2$ efflux can vary markedly in magnitude over both time and space, and understanding this variation is crucial for the correct measurement of $CO_2$ efflux in ecological studies. Although considerable research has quantified temporal variability in this flux, comparatively little effort has focused on its spatial variability. To account for spatial heterogeneity, we must be able to determine the number of sampling points required to adequately estimate soil $CO_2$ efflux in a target ecosystem. In this paper, we report the results of a study of the number of sampling points required for estimating soil $CO_2$ efflux using a closed-dynamic chamber in young and old Japanese cedar plantations in central Japan. The spatial heterogeneity in soil $CO_2$ efflux was significantly higher in the mature plantation than in the young stand. In the young plantation, 95% of samples of 9 randomly-chosen flux measurements from a population of 16 measurements made using 72-$cm^2$ chambers produced flux estimates within 20% of the full-population mean. In the mature plantation, 20 sampling points are required to achieve means within $\pm$ 20% of the full-population mean (15 measurements) for 95% of the sample dates. Variation in soil temperature and moisture could not explain the observed spatial variation in soil $CO_2$ efflux, even though both parameters are a good predictor of temporal variation in $CO_2$ efflux. Our results and those of previous studies suggest that, on average, approximately 46 sampling points are required to estimate the mean and variance of soil $CO_2$ flux in temperate and boreal forests to a precision of $\pm$ 10% at the 95% confidence level, and 12 points are required to achieve a precision of $\pm$ 20%.

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF

Two Different Enclosure-based Measurements Applications for Trace Gas Surface Emission and Sensitivity Analysis for Soil NO Emission by Using a Flow-through Dynamic System (지표 미량기체 방출에 대한 두 가지 다른 형태의 Enclosure 기반 측정 방법의 응용 및 Flow-through Dynamic System을 이용한 토양 NO 방출의 민감도 분석)

  • Kim, Deug-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.170-178
    • /
    • 2007
  • Rapid increases in the concentrations of greenhouse gases and many other chemically important trace gases have occurred over the last several centuries. For understanding the roles of these important gases in global change, it is essential to identify their sources and sinks, to characterize biogenic gas fluxes between the biosphere and atmosphere, and to understand the processes that control them. In this paper, enclosure-based measurements are described in a practical manner for field experiments. Theoretical reviews of mass balance equation in the enclosure and sensitivity of the flow-through dynamic flux chamber technique are presented; specifically for the case of NO flux measurements from soil surface. The physical system and theory behind the flow-through dynamic flux chamber method are examined. New calculation flux formula was introduced by considering NO chemical loss on chamber wall and uncertainties of the NO flux calculation were discussed.

Environmental Geochemistry of Atmospheric Mercury: Its Backgriound Concentrations and Exchange Across the Air-Surface Interface (대기수은의 환경지화학: 배경농도측정 및 대기-지표면간의 교환작용)

  • 김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 1996
  • Mercury (Hg) is ubiquitous throughout the earth's atmosphere. The uniqueness of its atmospheric geochemistry is well-known with the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) associated with its high chemical stability. Despite a growing recognition of the environmental significance of its global cycling, the prexisting Korean database for atmospheric Hg is extremely rare and confined to a number of concentration measurements conducted under relatively polluted urban atmospheric environments. To help activate the research on this suvject, an in-depth analysis on the current development in the measurements of atmospheric mercury and the associated fluxes has been made using the most using the most updated data ests reported worldwide. As a first step toward this purpose, the most reliable techniques commonly employed in the measurements of its concentration in the background atmosphere are introduced in combination with the flux measurement techniques over soil surface such as: dynamic enclosure (or field flux chamber) method and field micrometeorological method. Then the results derived using these measurement techniques are discussed and interpreted with an emphasis on its mobilization across the terrestrial biosphere and atmosphere interface. A unmber of factors including air/soil temperature, soil chemical composition, soil water content, and barometric pressure are found out to be influential to the rate and amount of such exchange processes. Although absolute magnitude of such exchange processes is insignificant relative to that of the major component like the oceanic environment, this exchange process is thought to be the the predominant natural pathway for both the mobilization and redistribution of atmospheric Hg on a local or regional scale.

  • PDF

Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field (배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

Advanced Microwave Scanning Radiometer E Soil Moisture Evaluation for Haenam Flux Monitoring Network Site (해남 플럭스 타워 지점에서의 Advanced Microwave Scanning Radiometer E 토양수분자료의 검증)

  • Hur, Yoo-Mi;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • In this study, temporal variations of the Advanced Microwave Scanning Radiometer E (AMSR-E) soil moisture products were evaluated using ground based measurements from the Haenam flux monitoring network site for two years (2004 and 2006). Even if there were major comparison issues including spatial resolutions, AMSR-E soil moisture production showed a great potential to replicate temporal variability patterns with ground based measurements. Additional intensive validation efforts should be conducted at a variety of field conditions including vegetation type for better utilization of remotely sensed soil moisture and understanding of the land surface-atmosphere interactions in the view of hydrometeorology.

Modeling approach in mapping groundwater vulnerability

  • Im Jeong-Won;Bae Gwang-Ok;Lee Gang-Geun;Seok Hui-Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.304-307
    • /
    • 2005
  • A numerical modelling method using a backward-in-time advection dispersion equation is introduced in assessing the vulnerability of groundwater to contaminants as an alternative to classical vulnerability mapping methods. The flux and resident concentration measurements are normalized by the total contaminants mass released to the system to provide the travel time probability density function and the location probability function. With the results one can predict the expected travel time of a contaminant from up stream location to a well and also the relative concentration of the contaminant at a well. More specific groundwater vulnerability can be mapped by these predicted measurements.

  • PDF