• Title/Summary/Keyword: Soil enzyme activity

Search Result 405, Processing Time 0.019 seconds

Studies on Penicillinase Produced by a Streptomyces sp. (Part 2) Enzymatic Characteristics of the Penicillinase Produced by Streptomyces sp. YS-40. (Streptonyces sp. 가 생산하는 Penicillinase에 관한 연구 (제2보) Strepteptomyces sp. YS-40이 생산하는 Penicillinase의 효소학적 성질)

  • 도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 1982
  • A strain of Streptomyces sp. (YS-40) which was able to produce penicillinase, was isolated from soil and the enzymatic characteristics of this enzyme were investigated. The crude enzyme was obtained with the fractionation by 80 % cold acetone. The optimal temperature and pH of this enzyme was 45$^{\circ}C$ and 5.0 respectively. The stable pH range of the enzyme was between pH 5.5 and 8.0 at 37$^{\circ}C$. By heat treatment at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 10 min, the remained relative activities were about 50%, 30% respectively. The activity of the enzyme was inhibited by Cu$^{++}$, $_Mn^{++}$, Zn$^{++}$ but Co$^{++}$, Li$^{++}$, $Ca^{++}$, $Mg^{++}$ $Ba^{++}$ did not affect. Among 11 chemical reagents, ethylenedi aminetetra-acetic acid disodium salt (EDTA-2Na), sodium dodecyl sulfate (SDS) and sodium fluoride inhibited the enzyme activity.

  • PDF

Role of Arbuscular Mycorrhizal Fungi in Phytoremediation of Soil Rhizosphere Spiked with Poly Aromatic Hydrocarbons

  • Gamal, H. Rabie
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. The effect of arbuscular mycorrhizal fungi (Am) on remediation efficacy of wheat, mungbean and eggplant grown in soil spiked with polyaromatic hydrocarbons (PAH) was assessed in a pot experiment. The results of this study showed that Am inoculation enhanced dissipation amount of PAHs in planted soil, plant uptake PAHs, dissipation amount of PAHs in planted versus unplanted spiked soil and loss of PAHs by the plant-promoted biodegradation. A number of parameters were monitored including plant shoot and root dry weight, plant tissue water content, plant chlorophyll, root lipid content, oxido-reductase enzyme activities in plant and soil rhizosphere and total microbial count in the rhizospheric soil. The observed physiological data indicate that plant growth and tolerance increased with Am, but reduced by PAH. This was reflected by levels of mycorrhizal root colonization which were higher for mungbean, moderate for wheat and low for eggplant. Levels of Am colonization increased on mungbean > wheat > eggplant. This is consistent with the efficacy of plant in dissipation of PAHs in spiked soil. Highly significant positive correlations were shown between of arbuscular formation in root segments (A)) and plant water content, root lipids, peroxidase, catalase polyphenol oxidase and total microbial count in soil rhizosphere as well as PAH dissipation in spiked soil. As consequence of the treatment with Am, the plants provide a greater sink for the contaminants since they are better able to survive and grow.

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

Investigation of Cellulase of Microbial origin (미생물유래의 섬유소 분해효소의 연구)

  • 김은수;이순진
    • Korean Journal of Microbiology
    • /
    • v.14 no.2
    • /
    • pp.65-74
    • /
    • 1976
  • Atternaria sp. was isolated from soil and crude cellulases were prepared from wheat bran culture of the fungus. The activities of the crude enzyme were studied on five different subvstrates and some phsical properties were also examined, crude enzymes were purified by column chromatography on DEAE Sephadex and Sephadex, Isozymes were separated some of which were active specifically on DEAE cellulose and some were primarily active on cellulose and CM-cellulose. The optimal points of pH and temperature for the crude enzyme were varied depending on the substrates ; On cellulose they were at pH 6.0 and 40.deg.C, on CM-cellulose at pH's 4.0 and 6.0 and 60.deg.C, and on DEAW-cellulose at pH 5.0 and 50.deg.C. Two active fractions, F-1 and F-II on Na-CMC was used as substrate the Km values of crude enzyme, F-I and F-II were calculated to be $4{\times}10^{-5}$ , 1.1 * 10$^{-4}$ , and $1.25{\times}10^{-4}mN$ resepctively. The Ki value of $Cu^{++}$ for crude enzyme was$4{\times}^{-4}mN$ , while that of $Nm^{++}$ while in the same concentration of $Mn^{++}$ it reached to 91%. Some 57% activity of F-1 was inhibited in s mN $Cu^{++}$, whereas it was inhibited as much as 81% in the same concentration above the concentration of 0.3 mM with tis activity reaching up to 137% in 2 mM. On the other hand the F-11 was inhibited by the presence of M $n^{++}$ and some 67% activity was inhibited at 2mM.

  • PDF

Isolation of Bacillus sp. Producing ${\beta}-Galactosidase$ with High Transgalactosylation Activity and its Culture Characteristics Regarding Enzyme Production (갈락토스 전이활성이 높은 ${\beta}-galactosidase$ 생산균의 분리 및 효소생산과 관련된 몇가지 특징)

  • Kim, Min-Hong;Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.502-506
    • /
    • 1995
  • A Bacillus strain which produces ${\beta}-galactosidase$ with high transgalactosylation activity, was isolated from soil and tentatively designated as Bacillus sp. A1. When ${\beta}-galactosidase$ from Bacillus sp. A1 reacted with 40% (w/w) lactose, transgalactosylation ratio reached up to 90% at the 70% conversion of the initial lactose. The biosynthesis of the enzyme in Bacillus sp. A1 required lactose as an inducer and was repressed by glucose. Observing that the addition of amino acids to culture medium resulted in enhancing, to a significant extent, both the growth and the enzyme production of the strain, yeast extract and commercially available hydrolysates of protein were examined for the suitability as amino acid source. As it turned out, SMP, an enzymatic hydrolysis product of soybean protein from Fuji Oil Co.(Japan), was the most suitable for optimization of the culture medium. When Bacillus sp. A1 was cultured in the presence of 0.5% SMP and 2% lactose, the enzyme activity increased up to $1.8\;U/m{\ell}-broth$.

  • PDF

Effects of Organic Amendments on Heavy Mineral Oil Biodegradation (중질유 오염토양의 생물학적 처리에 있어 amendments의 효과)

  • Lee, Sang-Hwan;Kim, Eul-Young;Choi, Ho-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • To examine the effects of amendments on heavy mineral oil degradation, a pilot scale experiment was conducted for over 105days. During the experiment, soil samples were collected and analyzed periodically for the determination of residual hydrocarbon and microbial activities. At the end of the experiment, the initial level of contamination ($6,205{\pm}173mgkg^{-1}$) was reduced by $33{\sim}45%$ in the amendment amended soil; whereas only 8% of the hydrocarbon was eliminated in the non-amended soil. Heavy mineral oil degradation was much faster and more complete in compost amended soils. Enhanced dissipation of heavy mineral oil in compost amended soil might be derived from increased microbial activities (respiration, microbial biomass-C) and soil enzyme activity(lipase, dehydrogenase, and FDA hydrolase) were strongly correlated with heavy mineral oil biodegradaton (P < 0.01).

Purification and Characterization of Cyclodextrin Glycosyltransferase from Alkalophilic Bacillus sp (호알카리성 Bacillus sp.의 cyclodextrin glycosyltransferase의 정제와 특성)

  • 정용준;공인수;유주현;강윤숙
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.44-48
    • /
    • 1990
  • Alkalophilic sp. YC-335 isolated from soil was capable of producing large amount of cyclodextrin glycosyltransferase (CGTase) in culture broth. This enzyme was successively purified 52.9 folds with 17.8 yield by ethanol precipitation, DEAE-Toyopearl column chromatography and Sephadex G-100 column chromatography. The purified enzyme have a molecular weight of approximately 75,000 estimated by SDS polyaerylamide gel electrophoresis. The optimum pH and temperature for the enzyme activity were 6.0 and 5$0^{\circ}C$, respectively. The enzyme stable between pH 6 and 10, and up to 5$0^{\circ}C$. The thermostability of the enzyme was increased up to 6$0^{\circ}C$ by the addition of 15mM CaCl$_2$.

  • PDF

Screening of Exiguobacterium acetylicum from Soil Samples Showing Enantioselective and Alkalotolerant Esterase Activity

  • Hwang Bum-Yeol;Kim Ji-Hyun;Kim Juhan;Kim Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • About 3,000 bacterial colonies with esterase activities were isolated from soil samples by enrichment culture and halo-size on Luria broth-tributyrin (LT) plates. The colonies were assayed for esterase activity in microtiter plates using enantiomerically pure (R)- and (S)-2-phenylbutyric acid resorufin ester (2PB-O-res) as substrates. Two enantioselective strains (JH2 and JH13) were selected by the ratio of initial rate of hydrolysis of enantiomerically pure (R)- and (S)-2-PB-O-res. When cell pellets were used, both strains showed high apparent enantioselectivity ($E_{app}>100$) for (R)-2PB-O-res and were identified as Exiguobacterium acetylicum. The JH13 strain showed high esterase activity on p-nitrophenyl acetate (pNPA), but showed low lipase activity on p-nitrophenyl palmitate (pNPP). The esterase was located in the soluble fraction of the cell extract. The crude intracellular enzyme preparation was stable at a pH range from 6.0 to 11.0.

Visible injury and growth inhibition of black pine in relation to oxidative stress in industrial areas

  • Han, Sim-Hee;Kim, Du-Hyun;Ku, Ja-Jung;Byun, Jae-Kyung;Lee, Jae-Cheon
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • The objective of our study was to investigate the major reasons for the different growth and visible injury on the needles of black pine growing in Ulsan and Yeocheon industrial complex areas, South Korea. After 12 years of growth, we collected climatic and air pollutant data, and analyzed soil properties and the physiological characteristics of black pine needles. Annual and minimum temperatures in Ulsan were higher than those in Yeocheon from 1996 to 2008. Ozone ($O_3$) was the pollutant in greatest concentration in Yeocheon, and whereas the $SO_2$ concentration in most areas decreased gradually during the whole period of growth, $SO_2$ concentration in Yeocheon has increased continuously since 1999, where it was the highest out of four areas since 2005. Total nitrogen and cation exchange capacity in Yeocheon soil were significantly lower than those of Ulsan. The average growth of black pine in Yeocheon was significantly smaller than that in Ulsan, and the growth of damaged trees represented a significant difference between the two sites. Photosynthetic pigment and malondialdehyde content and antioxidative enzyme activity in the current needles of black pine in Yeocheon were not significantly different between damaged and healthy trees, but in 1-year-old needles, there were significant differences between damaged and healthy trees. In conclusion, needle damage in Yeocheon black pine can be considered the result of long-term exposure to oxidative stress by such as $O_3$ or $SO_2$, rather than a difference in climatic condition or soil properties, and the additional expense of photosynthate needed to overcome damage or alleviate oxidative stress may cause growth retardation.

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF