• Title/Summary/Keyword: Soil environmental research

Search Result 3,431, Processing Time 0.023 seconds

Evaluation of Fluoride Distribution, Fate and Transport Characteristics in Soils (토양 중 불소 분포 및 거동 특성 평가)

  • Lim, Ga-Hee;Lee, Hong-Gil;Kim, Hyoung-Seop;Noh, Hoe-Jung;Ko, Hyoung-Wook;Kim, Ji-In;Jo, Hun-Je;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.90-103
    • /
    • 2018
  • Although fluoride is an essential trace element, ingestion of excessive amount of fluoride could have detrimental effect on human health. Generally, the bioavailability of fluoride in soils was low, but it could be harmful to the environment depending on the soil properties. Therefore, it is necessary to understand the concentration distribution, and fate and transport characteristics of fluoride to establish a resonable management strategy for fluoride pollution. This study was conducted to evaluate nationwide fluoride distribution in soils in Korea, as well as its fate and transport characteristics. The average background concentration was 204.5 (15.3~504.8) mg/kg, which is lower than the values of foreign soils. For the three regions of different land use, the average concentration was 229.6 mg/kg in region 1, 195.7 mg/kg in region 2, and 273.4 mg/kg in region 3. The concentration of fluoride was the highest in soils from Youngnam block within tectonic structure derived from metamorphic rocks. The results of sequential extraction to access F bioavailability showed fluoride in soils mainly existed as a residual form, which suggests the bioavailability of fluoride was relatively low. Soil properties such as soil pH, CEC, and clay content were found to affect F bioavailability of soil.

Concentrations and Distributions of 5 Metals in Groundwater Based on Geological Features in South Korea

  • Jeon, Sang-Ho;Park, Sunhwa;Song, Da-Hee;Hwang, Jong-yeon;Kim, Moon-su;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Ki-In;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen-Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.357-368
    • /
    • 2017
  • To establish new metal groundwater standard, 5 metals such as aluminum, chromium, iron, manganese, and selenium were evaluated by Chemical Ranking Of groundWater pollutaNts (CROWN) including possibility of exposure, toxicity, interest factor, connection standard for other media, and data reliability. 430 groundwater samples in 2013 and 2014 were collected semiannually from 110 groundwater wells and they were analyzed for selenium, manganese, iron, chromium, and aluminum. For this study, 430 groundwater samples were categorized into 3 geological distribution features, such as igneous, metamorphic, and sedimentary rock region and geological background levels were divided by pre-selection methods. For the results, the average concentrations of aluminum, chromium, iron, manganese, and selenium in 430 groundwater samples were $0.0008mg\;L^{-1}$, $0.0001mg\;L^{-1}$, $0.174mg\;L^{-1}$, $0.083mg\;L^{-1}$, and $0.0004mg\;L^{-1}$, respectively. In addition, among various geologies, average concentration of selenium was the highest in igneous rock region, average concentrations of chromium, manganese and aluminum were the greatest in sedimentary rock region, and average concentration of iron was the most high in metamorphic rock region. As a result of the geological background concentration with pre-selection method, background concentrations of selenium and aluminum in groundwater samples were the highest from sedimentary rock as $0.0010mg\;L^{-1}$ and $0.0029mg\;L^{-1}$ and background concentrations of manganese and iron in groundwater samples were the greatest from metamorphic rock as $0.460mg\;L^{-1}$ and $1.574mg\;L^{-1}$, and no chromium background concentration in groundwater samples was found from all geology.

Study on The Gross Alpha Analysis Method with LSC (LSC를 이용한 전알파 분석법 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Kim, Hyun Koo;Kim, Dong Su;Kim, Young Rok;Jeong, Do Hwan;Yang, Jae Ha;Park, Sun Hwa;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.104-110
    • /
    • 2014
  • In order to study gross alpha analysis method using LSC, the efficiency tests with uranium standard materials were performed and then compared with the GPC method (US EPA 900.0 method) using 15 groundwater samples. For 15 groundwater samples, the average efficiencies of the GPC and LSC method were 7~11% and 90%, respectively. The average precisions of the GPC and LSC method were 16.16% and 6.00%, respectively. Also, The average standard deviations for 15 samples were 7.38 pCi/L and 2.95 pCi/L, respectively. The determination coefficient of the tested results by two methods was 0.9948. As a result, the LSC method tested in this study was applicable for the screening of the gross alpha and showed the advantages in the gross alpha measurement due to the simple measurement procedures.

Contamination Characteristics of Agricultural Groundwater Around Livestock Burial Areas in Korea (가축매몰지 주변 농업지역 지하수의 수질오염 특성 분석)

  • Kim, Hyun Koo;Park, Sun Hwa;Kim, Moon Su;Kim, Hye Jin;Lee, Min Kyeong;Lee, Gyeong-Mi;Kim, So-Hyun;Yang, Jae-Ha;Kim, Tae Seung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Seasonal variations of major contaminants in groundwater around livestock burial areas in Gyeonggi province, Korea, were examined. Seven typical contamination indicators ($NO_3$-N, $NH_3$-N, chloride, pH, DO, ORP, and EC) were monitored in groundwater samples collected from 84 wells located within 60 m of livestock burial sites for the leachate plume emanating from the livestock burial sites. The monitoring results of pH, DO, ORP, and EC revealed minimal seasonal variations, providing no evidence for leachate plumes. The $NO_3$-N concentrations were below 30 mg/L and exhibited minimal seasonal fluctuations, even in the wells located close to (< 20 m) the burial sites; the $NH_3$-N and chloride concentrations also showed similar results. The contamination indicators examined in this study indicate that the observed groundwater contamination is primarily from preexisting pervasive contamination due to agricultural activities and livestock farming, not leachates derived from nearby livestock burial sites.

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Pesticides Residue Monitoring and Impact Evaluation of Golf Course and Neighbouring Area in Korea (국내 골프장농약 사용에 따른 골프장 및 인근 지역의 잔류농약 모니터링 조사를 통한 영향평가)

  • Lee, Jun-Bae;Cho, Hoon-Je;Kwak, Eun-Jie;Park, Kyoung-Hoon;Lee, Min-Keong;Kim, Hyun-Koo;Jeoung, Hyeon-Mi;Chang, Hee-Ra
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • BACKGROUND: At these days, the human health and environmental concerns of pesticide used for turf grass management at golf courses in Korea have increased. The objectives of the study were to determine the pesticide residues for golf course and neighboring area and evaluate the impact moved into neighboring area of pesticides treated at golf courses. METHODS AND RESULTS: Three golf courses and neighboring areas in Korea were monitored from July to October, 2017. The soil sample collection was divided the golf course into its logical parts (such as a greens, fairways, and rough) and neighboring area soil samples were collected at three different points. The water samples of the golf course and neighboring area were collected at three different points, respectively. The pesticide residues for soil and water sample were monitored by the multi-residue screening method of 98 pesticide with HPLC-MS-MS. The concentrations of detected pesticide in soil and water samples of the golf course were in the range of 0.01~1.26 mg/kg and 0.0001~0.0089 mg/kg, respectively. The residue levels for detected pesticides in neighboring area were at 0.01~0.04 mg/kg and 0.0001~0.0029 mg/kg, respectively, well below those level in golf course. CONCLUSION: This study indicate that the pesticide residue levels of golf course and neighboring area in Korea may not a possible risk of exposure on soil and aquatic environment. For future work, more monitoring should be performed so that the evaluation data becomes more valid.