• Title/Summary/Keyword: Soil creeping

Search Result 82, Processing Time 0.031 seconds

Effect of Sand Particle Sizes on Turf Vegetation of Creeping Bentgrass (모래입경이 Creeping Bentgrass 잔디 초지의 식생에 미치는 영향)

  • Park Sung-Jun;Cho Nam-Ki;Kang Young-Kil;Song Chang-Khil;Cho Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.205-210
    • /
    • 2005
  • This study was conducted from March 21 to July 9 in 2004 at JeJu Island to investigate the effect of different particle sizes (0.3-0.5, 0.5-0.8, 0.8-1.0, 1.0-1.5 and 1.5-2.0mm) on creeping bentgrass vegetation. The results obtained were summarized as follows; plant height became shorter as particle size was increased from 0.3-0.5 to 1.5-2.0 n. Root length, Minolta SPAD-502 chlorophyll reading value, leave and root weight were directly proportional plant height response. Degree of land cover and density of creeping bentgrass decreased as the particle size was increased from 0.3-0.5 to 1.5-2.0nm, and degree land cover and density of weed increased. The number of weed species were increased as the sand particle size was increased. Then ranking of the dominant weeds were Portulaca oleracea, Trifolium repens and Cyperus amuricus (at 0.3-0.5 and 0.5-0.8mm particle size), Trifolium repens, Portulaca oleracea and Polygonum hydropiper (at 0.8-1.0mm particle size), Portulaca oleracea, Polygonum hydropiper and Poa annua (at 1.5-2.0mm particle size). Based on the these findings, the optimum sand particle size for growth of creeping bentgrass seems to be about 0.3-0.5m in volcanic ash soils of Jeju island.

Enhanced Phosphorous Uptake and Growth Improvement of Creeping Bentgrass after Application of Liquid Fertilizer Containing Humic acid and Saccharomyces cerevisiae Broth (부식산 및 효모균 배양액 함유 액상비료 처리에 따른 크리핑 벤트그래스의 인 흡수 및 생육 증대 효과)

  • Lee, Ka Youn;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.259-268
    • /
    • 2018
  • This study was conducted to evaluate the effect of liquid fertilizer containing humic acid and Saccharomyces cerevisiae broth (LHS) on changes of turfgrass growth by investigating visual quality, chlorophyll content, dry weight of clipping, and nutrient content in leaf tissues. Treatments were designed as follows; control fertilizer (CF), HS-1 ($CF+1.0mL\;m^{-2}\;LHS$), HS-2 ($CF+2.0mL\;m^{-2}\;LHS$), and HS-3 ($CF+4.0mL\;m^{-2}\;LHS$). After treatment of LHS on creeping bentgrass, soil pH in the treated plots was decreased than that of CF. As compared to CF, visual quality, chlorophyll content and content of N, P and K were not significantly different in the LHS treatments. However, clipping yield and phosphorus uptake of HS-2 were significantly increased by 22% and 33%, respectively. These results showed that application of LHS improved the phosphorus uptake and growth of creeping bentgrass, which would be an alternative management tool for the cool season turfgrass under stress conditions.

Effect of Soil Moisture and Irrigation on Pathogenicity of Entomopathogenic Nematodes (토양수분과 관수량이 곤충병원성선충의 병원성에 미치는 영향)

  • Lee Dong-Woon;Choi Woo-Geun;Lee Sang-Myeong;Kim Hyeong-Hwan;Choo Ho-Yul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 2006
  • Entomopathogenic nematodes (EPNs) have been used as biological control agents for control of various agro-forest insect pests, and are especially effective against soil-dwelling insect pests. Effect of soil moisture on pathogenicity of commercial EPNs for white grub control was evaluated in laboratory, pots, and golf courses. Pathogenicity of EPNs in sand column was variable depending on depth, soil moisture, and EPN species or strain. All tested EPNs (Heterorhabditis sp. GSNUH1, Heterorhabditis sp. GSNUH2, Steinernema carpocapsae GSN1, and S. longicaudum Nonsan strain) showed similar pathogenicity against the bait insect, great wax moth (Galleria mellonella) larva at 2 cm deep at a given soil moisture. However, pathogenicity of the Heterorhabditis sp. GSNUH1 strain was decreased with increasing soil moisture. Pathogenicity of S. carpocapsae GSN1 strain was the lowest in 3% soil moisture (v/w) at 7 cm depth. However, there was no difference in pathogenicity between Heterorhabditis sp. GSNUH2 and S. longicaudum Nonsan strain. Although pathogenicity of Heterorhabditis sp. KCTC 0991BP strain showed no difference against the 2nd instar of Exomala orientalis, that of the S. carpocapsae GSN1 strain was decreased in the laboratory depending on soil moisture. Highly pathogenic strain EPN, Heterorhabditis sp. KCTC 0991BP strain, showed higher pathogenicity at 100 mm irrigation than non-irrigation or 10 mm irrigation. However, poor pathogenic strain EPN, S. carpocapsae GSN1 strain, was not different in pathogenicity from the 2nd instar of Exomala orientalis in creeping bentgrass (Agrostis palustris) depending on irrigation amount in the pot. Pathogenicity of EPNs in field experiment at the tee of Ulsan golf club showed a similar trend to that in the pot experiment.

Effect of Highly Water-Absorbing Polymer on Thrfgrass Quality of Creeping Bentgrass, Kentucky Bluegrass, and Zoysiagrass (초흡수성 고분자 중합체가 크리핑 벤트그래스, 켄터키 블루그래스 및 들잔디의 잔디품질에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.59-68
    • /
    • 2011
  • Research was initiated to investigate the effect of high water-absorbing polymer on turf grass quality of three major turfgrasses. A total of 12 treatment combinations were used in the study. Treatments were made with different rates of sand, soil organic amendment (SOA), and water-swelling polymer (WSP). Visual turf grass quality was evaluated in creeping bentgrass (Agrostis palustris Huds., CB), Kentucky bluegrass (Poa pratensis L., KB), and zoysiagrass (Zoysia japonica Steud., Zoy) grown under greenhouse conditions. Significant differences were observed among the treatments in CB, KB, and Zoy. Visual quality ratings varied with mixing rates of SOA and WSP, being maximum 5.6 in differences among them. At the end of study it ranged from 0.3 to 9.6 in CB, 0.3 to 4.0 in KB, and 0.9 to 5.8 in Zoy. Turfgrass quality pattern changed with time after seeding among treatments influenced by WSP rates. From this study, a proper rate of WSP is considered to be 5%, 5~10%, and 5% for CB, KB and Zoy, respectively. In general, overall treatment effect of WSP on turfgrass quality was highly associated with SOA 20% in three turtgrass species. When mixing sand with SOA and WSP for rootzone soil, a proper rate of SOA is considered to be 15 to 20% for CB and KB, while 20% for Zoy of warm-season grass. A further study would be required to investigate the effect of varied, gradual mixing rates of WSP on growth characteristics of turfgrasses grown on mixtures of sand, SOA, and WSP before a field application.

Evaluation on Adaptation of Zosia japonica as Effected by Different Green Roof System under Rainfed Conditon (무관수 옥상녹화시스템의 차이에 따른 들잔디 적응성 평가)

  • Ju, Jin-Hee;Kim, Won-Tae;Choi, Woo-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1137-1142
    • /
    • 2010
  • This study proposes a guideline of a green roof system suitable for the local environment by verifying the growth of Zoysia japonica in a shallow, extensive, green roof system under rainfed condition. The experimental soil substrates into which excellent drought tolerance and creeping Z. japonica was planted were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$). The plant height, green coverage ratio, fresh weight, dry weight and chlorophyll contents of Z. japonica were investigated. For the soil thickness of 15cm, the plant height of Z. japonica was significantly as affected by the soil mixing ratio and it was shown in the order SL= $P_4P_4L_2$ < $P_7P_1L_2$ = $P_5P_3L_2$ < $P_6P_2L_2$. For the soil thickness of 25cm, the plant height was increased in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was not observed by soil the mixing ratio or soil thickness. However, the green coverage ratio was 86~90% with a good coverage rate overall. The chlorophyll contents of Z. japonica were not significantly affected by the soil mixing ratio in the soil thickness of 15cm, but were higher in the natural soil than in the artificial soil at 25cm soil thickness. The fresh weight and dry weight of Zoysia japonica were heavier in the 25cm thickness than in the 15cm thickness and in the artificial soil mixture than in the natural soil. The result indicated that the growth of Zoysia japonica was more effective in the 25cm soil thickness with artificial soil than in the 15cm soil thickness with natural soil in the green roof system under rainfed condition.

The Effect of Compound Fertilizer Contained Slow Release Nitrogen on Turfgrass Growth in Creeping Bentgrasss and on Change in Soil Nitrogen (완효성 질소 비료의 시비가 크리핑 벤트그래스 생장과 토양 중 질소변화에 미치는 영향)

  • Kim, Young-Sun;Kim, Tack-Soo;Ham, Suon-Kyu;Ban, Su-Won;Lee, Chang-Eun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.111-122
    • /
    • 2009
  • Compound fertilizer contained slow release nitrogen was used at golf course management because of promoting turfgrass growth and decreasing fertilizing labor. But, it was hardly published about turf grass growth by its effect and form like isobutylidene diurea(IBDU) and methylene urea(MU) in golf course management of Korea. This study was conducted to investigate the effect of compound fertilizer contained slow release nitrogen such as IBDU and MU on creeping bentgrasss and the change in nitrogen in the root zone after application of fertilizers at AM turfgrass research institute with soil analysis, chlorophyll content index, leaf area index and dry weight during 5 months from July to december in 2007 year. Fertilizer treatments were designed as following; non-fertilizer(NF), straight fertilizer(CF), treatment 1(MU), treatment 2(IBDU 1), and treatment 3(IBDU 2). The every treatments were arranged a randomized complete block design with three replications. Results obtained were summarized as follows: As relative to time after N fertilizers application, ammonium and nitrate in soil were increased, but T-N was decrease. $NO_3$-N and T-N content of slow release fertilizer(SRF), the treatment MU, IBDU 1 and IBDU 2, in soil was higher than that of CF, and the change of ratio of available N and T-N by elapsed time after fertilizing SRFs and CF was higher about 5% in root zone of SF to l5days, but in root zone of SRF from 30days about $5{\sim}10%$. Compared with NF, the turf color index was increased 6.5%, 6.7%, 5.9% and 5.5%, respectively, the chlorophyll content 33.2%, 38.4%, 35.1% and 37.1%, the dry weight 76.2%, 77.7%, 69.5 and 72.3% and shoot number 28%, 52%, 56% and 51%. The chlorophyll content index of MD, IBDU 1 and IBDU 2 was increased $2.6{\sim}5.2%$ than that of CF, shoot number $18{\sim}22%$ but turf color index and dry weight was analogous to that of CF. These results showed that the SRF application was supplied nitrogen for a long time in root zone by increasing an available nitrogen, and so bring turf growth such as chlorophyll content and shoot number in creeping bentgrass.

Response of Bentgrass Cultivars to Microdochium nivale Isolates Collected from Golf Courses

  • Chang, Tae-Hyun;Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.232-341
    • /
    • 2011
  • Pink snow mold, caused by Microdochium nivale, is a major disease on cool season turfgrasses in golf courses in northern Unites States. The relative susceptibility of 17 commercial cultivars of three bentgrass species (creeping, colonial and velvet bentgrass) to Microdochium nivale and the aggressiveness of M. nivale eight isolates obtained from infected turfgrasses on golf courses in Wisconsin were evaluated under controlled conditions. For the field trial, susceptibility of 2 year-old 12 commercial bentgrass cultivars was evaluated after inoculating three M. nivale isolates in the fields. There were significant differences in disease severities among the three bentgrass species, particularly between tetraploids (creeping and colonial) and diploid (velvet) species, and among cultivars within each species, indicating that there are varying levels of susceptibility in species and cultivars to M. nivale. Host resistance by days of cold hardening was confirmed, by detecting the resistance by 30 days of cold hardening treatments. In field trial, susceptibility of 12 bentgrass cultivars was highly correlated to the results obtained from growth chamber experiments. The positive correlation of the susceptibility between growth chamber experiments and field trials demonstrates that the growth chamber method is a useful technique for saving time, space and labor to evaluate efficiently pink snow mold susceptibility of bentgrass cultivars. This study could be applied to evaluating susceptibility of bentgrass to pink snow mold and also predicting a prospective evaluation of bentgrass cultivars to pink snow mold in fields in a breeding program.

The selection of Post-emergence Herbicides to Control of Poa annua in Kentucky Bluegrass (Kentucky bluegrass 내 새포아풀 방제를 위한 경엽처리제 선발)

  • Hong, Beom-Seok;Tae, Hyun-Sook
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.76-81
    • /
    • 2013
  • This study was performed to find the effective post-emergence herbicides to control of Poa annua that has already emerged from the soil in Kentucky bluegrass. A total of 8 treatments consist of various post-emergence herbicides applied at recommended concentration or lower concentration than recommended concentration to prevent Kentucky bluegrass injury in this study. Methiozolin showed the least injury in Kentucky bluegrass during 40 days after treatments and there were no footprints by methiozolin in creeping bentgrass green during 20 days. However, Poa annua control was 60.4%, which was less than those of other 7 treatments in this study. Both of asulam sodium and iodosulfuron plus asulam sodium exhibited the higher Poa annua control of 81.7% and 82.2% respectively without serious injury in Kentucky bluegrass during 40 days, and they showed a slight footprints damage in creeping bentgrass green. On the other hand, critical Kentucky bluegrass injuries and the vivid and numerous footprints were occurred in treatments of trifloxysulfuron-sodium, foramsulfuron, rimsulfuron and flazasulfuron, even though they were applied with only 1/4 of recommended concentration. Methiozolin is available to reduce gradually Poa annua population on Kentucky bluegrass without severe turfgrass damage. Asulam sodium or iodosulfuron plus asulam sodium could be useful to remove Poa annua by spot treatment but it is prohibited to spray directly on green even spot.

Growth and Wear Tolerance of Creeping Bentgrass as Influenced by Silica and Potassium Fertilization (규산 및 칼리 시비에 따른 벤트그래스 생육 및 내답압성 반응)

  • Kim, Yong-Seon;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2012
  • The study was conducted to know whether turfgrass wear tolerance, growth, and quality could be improved by the application of silicon and potassium. First, turf responses to silicate and potassium were evaluated by several parameters such as, turf visual quality, root length, shoot density, and dry weight under the field condition. Second, turf responses to traffic frequencies were examined by turf growth (root) length, shoot density and dry weight) and soil hardness under the field condition. Finally, under traffic stress condition, the effects of silica and potassium application on wear tolerance were evaluated through the methods described above. Creeping bentgrass (Agrostis stolonifera) rooting were significantly improved by silica. The root length was enhanced by an increase in potassium silicate application. Certain level of light traffic is beneficial while frequent traffic cause serious adverse effect on visual quality of bentgrass. Under a traffic stress condition with 10 times of footing a day for 30 days, silica and potassium increased turf visual quality by 6.38% and 10.25% respectively when compared to the control. Silica and potassium treatment on trafficked plot increased turf visual quality by 11.4% and 10.2% respectively in comparison with the control with significant reduction of wear injury from the traffic. A co-application of potassium silicate with potassium sulfate provided the enhanced visual quality of turf as compared to application of silica or potassium fertilizer, respectively.

Identification and Characteristics of Sclerotinia homoeocarpa Causing Dollar Spot Disease in Zoysiagrass (한국잔디에 발생한 달라스팟 병의 주요 원인균인 Sclerotinia homoeocarpa의 동정 및 특성)

  • Park Dae-Sup;Kim Kyong-Duck;Yeom, Su-Rip;Oh Byung-Seog;Park Byoung-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • A fungal isolate was newly collected from Zoysiagrass 'Anyang-Joongji' in small circular patches on a fairway ofa golf course in Korea, which seriously occurred during the early summer period of 2005. The isolate presented on PDAmedium, named Scz1, was closely identical to Sclerotinia homoeocarpa, a casual fungus of dollar spot disease, in cool season turf grasses such as creeping bentgrass. Hereby, this study was accomplished to characterize the isolate and compare it with the fungus, named Scb1, isolated from dollar spot-infected creeping bentgrass (Agrostis palustris Huds. cv Penncross). On PDAmedium, individual mycelial appearance of three isolates was very similar except for the pigment. Mycelial pigments of Scz1 and Scz2 (another analogous isolate collected) were light pinkish on the reverse side of PDA medium but that of Scb1 was dark brownish. In a microscopic study, three isolates were barely distinguishable in the appearance of mycelia. As expected, in the temperaturesensitivity assay, all pathogens were very delicate to $32^{circ}C$ above but not to $30^{circ}C$ below, in which was explained to be one of typical characteristics in S. homoeocarpa. In an artificial inoculation assay, disease symptoms including leaf spots in Zoysiagrass were appeared within 6-7 days after inoculation through the hand inoculation method with the isolate-infested soil. Then the fungus was re-identified from the infected leaf tissues. Interestingly, inoculation of isolate Scz1 gave rise to distinct symptoms in only Zoysiagrass but not in creeping bentgrass 'Penncross' and Kentucky bluegrass 'Midnight'. The observation might be involved in host specific pathogenecity of S. homoeocarpa Scz1 to Zoysiagrass. In a chemical sensitivity assay for the isolate, Scz1, showed a high mycelial inhibition against two fungicides, iprodione and propiconazole. All results described above suggest that S. homoeocarpa Scz1 is a primary pathogen of Zoysia dollar spot disease.