• Title/Summary/Keyword: Soil creeping

Search Result 82, Processing Time 0.016 seconds

Seed longevity of glyphosate resistant transgenic creeping bentgrass (Agrostis stolonifera L.) lines

  • Hancock, Daniel;Park, Kee Woong;Mallory-Smith, Carol A.
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • Studies to estimate seed longevity and dormancy of creeping bentgrass (Agrostis stolonifera L.) were conducted from 2000 to 2005 at Corvallis and Hermiston, Oregon. Seeds from three transgenic glyphosate resistant creeping bentgrass lines, 48-10, 48-13, and ASR368, and one non-transgenic glyphosate susceptible line, SR1020, were used. Creeping bentgrass seeds were buried at 3, 18 and 31 cm in 2000 and removed 6, 12, 18, 24, and 51 months later. Soil type and climatic conditions were different at the two locations. At Corvallis, the soil was a Malabon silty clay loam, and the winters wet and mild. The soil at Hermiston was an Adkins fine sandy loam, and winters drier and colder. Seeds of all creeping bentgrass lines deteriorated faster at Corvallis than at Hermiston. The estimated half-lives of creeping bentgrass lines buried at Corvallis were 8.4 to 20.2 months, while those buried at Hermiston were 8.4 to 37.7 months. At both sites, seeds of the glyphosate resistant lines, 48-10 and 48-13, deteriorated faster than the susceptible line, SR1020. However, seed deterioration in the resistant line, ASR368, was slower than all other creeping bentgrass lines. Based on the germination test, exhumed intact seeds at Corvallis were more dormant than those at Hermiston. If buried, it could be expected that viable creeping bentgrass seeds will persist more than 4 years after the seeds are introduced to a site, but environmental conditions can influence both seed longevity and dormancy.

The Effect of KOB-Soil as a Soil Amendment on Turfgrass Growth (종합 토양개량재 KOB-Soil이 잔디 생육에 미치는 영향)

  • 이상재
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • This study was conducted to figure out the effect of KOB Soil on creeping bentgrass‘Cobra’, Kentucky bluegrass (KB)‘Midnight’75% + Perennial ryegrass (PR)‘Palmer III’25%. This experiment was conducted from September 1, 2001 to August 31, 2002 at Hwajoulryong in Jeongsun County, Gwangwon-do. Treatments were Sand 80% + Peatmoss 20%, Sand 80% +KOB-Soil (No. 1) 20%, and Sand 80% +KOB-Soil (No. 2) 20%. Treatments with KOB Soils was superior to control fer the leaf length, number of leaf, turf quality and root length in Creeping bengrass and Kentucky bluegrass + Perennial ryegrass.

Effect of IBDU Complex and Organic Fertilizers for Creeping Bentgrass in Golf Course (골프코스 Creeping Bentgrass에 대한 IBDU복합비료와 유기질비료류의 효과)

  • 함선규;김성태;김호준;이상기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 1997
  • This experiment was carried out to study an effect of organic fertilizer, IBDU complex and humate on the growth of creeping bentgrass(penncross) and the change of soil chemical characteristics. Results obtained are summarized as follows :1.Content of a total nitrogen in soil was increased in more IBDU complex and organic fertilizer than humate plot. 2.Content of a organic matter in soil was increased in organic fertiliter and humate plot. 3.CEC in soil was improved a little in humate-granular plot. 4.The yield of dry weight and leaf color 'was increased in more organic fertilizer than humate plot. 5.Root length was the most effective in humate plot.

  • PDF

Crack Form and Soil Physical Properties in Land Creeping area on Okjong, Hadong (하동군 옥종면 땅밀림 산사태지의 인장균열 형태와 토양 물리성 변화)

  • Kim, Ki-Dae;Park, Jen-Hyeon;Lee, Chang-Woo;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.435-440
    • /
    • 2016
  • This study was carried out to examine of soil physical property and crack shape by collapse process on landslide area (by land creeping) in Hadong, Gyeongnam. We investigated morphological characteristics (length, depth, cut slope) between main crack and local crack, soil physical properties change between undisturbed section and disturbed section. As a result, morphological characteristics of crack showed no significant difference main crack between local crack. In case of soil physical property variation, soil liquid phase was significantly higher at 31-40 cm of soil depth in disturbed section. And this result is likely to be due to site factors.

Evaluating Various Nitrogen Sources for Divot Recovery on Creeping bentgrass (Creeping bentgrass의 생육과 디봇피해 회복을 위한 질소의 유형별 효과)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.135-139
    • /
    • 2012
  • Creeping bentgrass (Agrostis stolonifera) is one of the most popular turfgrasses for high-quality playing surface such as putting green on golf courses and athletic fields. Continues damage such as divot injury on creeping bentgrass is major issue to maintain golf course properly. Although plentiful researches to maximize divot resistance have been reported, minimal research has focused on relation between nitrogen (N) sources and divot resistance. The study was conducted to determine the effect of N source for turfgrass divot recovery and overall tee performance. Eleven fertilizer treatments as N sources were applied to creeping bentgrass 'Penncross'. Before the first application, divot injuries were simulated by removing a core of soil and turfgrass from established plots and backfilling with native soil. Data collection included turfgrass color and quality. N release speed did not influenced divot recovery. Frequency of urea application had no effects on divot recovery. Urea with split application had no difference with no treatment for divot recovery. Polyon product especially polyon mini (41-0-0) had the best performance for divot recovery and for maintaining better turfgrass quality. Overall, small particle size of slow-release N form would influence creeping bentgrasss to recover divot damage.

The Effects of Inorganic Soil Amendment on Growth of Creeping Bentgrass(Agrostis palustris) in Golf Course (무기 토양개량제가 골프장 그린의 크리핑 벤트그래스 생육에 미치는 영향)

  • Lee, Jae-Pil
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.110-115
    • /
    • 2012
  • Soil amendments have been used to improve the physical and chemical condition of turf soil, which might optimize turfgrass growth in golf courses. This study was to investigate the effect of inorganic soil amendment (ZC) established in USGA root zone system on growth of creeping bentgrass, cv. 'Penncross' carried out from May to Dec. in 2005 at the nursery on Sinwon Golf Course. To analyze the effects of inorganic soil amendment on pH, specific gravity, infiltration rate, water content, soil hardness, root length, tiller density and dry weight were measured. pH was 6.7-6.8, specific gravity of sand (S) 100% was 1.48 heavier than the other treatments (1.28-1.38). Infiltration rate with ZC 15% + peat moss (P) 5% + S 80% and ZC 10% + S 90% was faster than S 100%. Soil hardness of S 100% was the highest. Root length of creeping bentgrass of P 10% + S 90% (8.6-12.0 cm) was the longest. Tiller density with P 5% + S 95% was more 4-7 ea than other treatments in summer season. In growing season, however, ZC 10% + P 5% + S 85% was more 2-3 ea than others. Dry weight of creeping bentgrass treated by ZC 10% + P 5% + S 85% in summer season and P 5% + S 95% in growing season were heavier than other treatments. It is recommended to combine 5-15% inorganic soil amendment and peat moss 5% with sand in order to sustain soil balance.

Characteristics and Factors Affecting Algae Development on Creeping Bentgrass Greens (크리핑 벤트그래스 그린에 발생되는 조류(Algae)의 특성과 발생원인)

  • 이혜원;정대영;심상렬
    • Asian Journal of Turfgrass Science
    • /
    • v.14 no.1
    • /
    • pp.257-262
    • /
    • 2000
  • This study was conducted on ten golf courses in the vicinity of Yongin city to find out the kinds of algae and factors affecting algae development on creeping bentgrass greens. 1. Serious algae contamination was observed on almost of creeping bentgrass greens after and before rainy season. 2. There were ten kinds of algae occurred on creeping bentgrass greens, most of which were Oscillatoria spp. (bluegreen algae) 3. The fact that the same kind of algae inhabiting in the pond was observed on greens indicated that greens were easily contaminated by algae in case of greens watered with the pond. 4. This study showed that the main factor affecting algae contamination on greens was not high total nitrogen and phosphorus contents in the green soil, but pond watering.

  • PDF

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF

Growth Characteristics of Creeping bentgrass Cultivars (크리핑 벤트그래스 품종의 생육 특성)

  • 이혜원;정대영;심상렬
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.2_3
    • /
    • pp.87-97
    • /
    • 2003
  • The growth characteristics of creeping bentgrass seeded in the seaside landfill golf course are as follows. 1. As a result of analysis on the chemical characteristics of soil mixture used for turfgrass ground in this experiment, soil pH was 7.9, which is somewhat higher than the creeping bentgrass reference value of pH 5.5∼6.5; T-N(%) was 0.02, which is proper for the reference value, and trace element too lacked. 2. The cultivar with the fastest water infiltration was Seaside II recorded as 226.2cm/sec, while that with the slowest water infiltration was Pennlinks recorded as 141.1 cm/hr which was too faster than the USGA water infiltration reference value of 15∼30cm/hr. For the surface hardness of turfgrass ground with different cultivars, no statistically significant variation was found between the Penncross grass and the Pennlinks recorded as 18.6mm and 19.1 mm, respectively. The soil penetration was the highest in Pennlinks recorded as 7.6kg/$\textrm{cm}^2$ and lowest in Penn A-1 as 6.1kg/$\textrm{cm}^2$. 3. As a result of evaluation on visual quality at the early stage of growth, Penncross showed the most excellent visual quality compared to the others. However, Penn A-1 showed the most excellent visual quality at a late stage of growth around Sep. 17, 2003, and it was also excellent in the evaluation of visual color. Seaside II showed higher density around the root and the longest root length and was highly resistant to salt compared to others, but the initial sprouting rate was not satisfied, and the visual quality in the summer season was inferior to others. 4. As a result of measurement of the traffic injury, Penncross showed the most tolerant to the traffic stress and Pennlinks showed the most susceptible.

Effects of Composted Liquid Manure and Microbial Agent Types on Growth and Thatch Decomposing of Creeping Bentgrass (가축분뇨발효액비와 미생물제제 종류별 시용에 따른 크리핑 벤트그래스의 생육과 토양중 대취분해에 미치는 영향)

  • Lim, Ji Yeon;Ham, Suon Kyu;Lee, Yeong Min;Cha, Young Gi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.54-61
    • /
    • 2014
  • This study was conducted to investigate the effect of Actinomyces sp. and Bacillus sp., United States granular microorganisms and Japan granular microorganisms on turfgrass growth and thatch decomposing of creeping bentgrass in golf course by measuring turf color index, chlorophyll index, thatch content of soil, root length, turf density and chemical properties and thatch content of soil. Fertilizer treatment was designed as follows; control(CF; compound fertilizer), microorganism medium(M; CF+M), microorganism medium and livestock manure fertilizer(M-L; CF+M+LMF), microorganism medium, livestock manure fertilizer and amino acid liquid fertilizer(M-L-A; MM+LMF+ALF), United States granular microorganisms(USGM; CF+USGM), Japan granular microorganisms(CF+JGM). Soil properties investigated after experiment was scarcely affected by applied fertilizers in root zone of creeping bentgrass. The turf color index and chlorophyll index of M, M-L, M-L-A, USGM, JGM treatment were higher than those of CF. The turfgrass root in M-L treatment was longer than others. The thatch content of soil in M treatment was longer than others. The thatch content of M was decreased than that of CF by 6.8%. These was suggested that application of M induced the development of quality and growth of creeping bentgrass by assisting turfgrass growth and thatch decomposing.