• Title/Summary/Keyword: Soil contents

Search Result 2,756, Processing Time 0.026 seconds

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Organic Carbon Retention

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.486-490
    • /
    • 2014
  • This study was conducted to investigate the effect of carbonized biomass from crop residues on soil carbon storage during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. The treatments consisted of control without input and three levels of carbonized biomass inputs as $59.5kg10a^{-1}$, C-1 ; $119kg10a^{-1}$, C-2 ; $238kg10a^{-1}$, C-3. Soil samples were collected during the 113 days of experimental periods, and analyzed soil pH and moisture contents. Soil carbon contents and soybean yield were measured at harvesting period. For the experimental results, soil pH ranged from 6.8 to 7.5, and then increased with increasing carbonized material input. Soil moisture contents were slightly higher by 0.1~1.5% than the control, but consistent pattern was not observed among the treatments. Soil carbon and organic carbon contents in the treatments increased at 24 and 15% relative to the control at 15 days after sowing, respectively. Loss rate of SOC (soil organic carbon) relative to its initial content was 7.2% in control followed by C-1, 6.8%> C-2, 3.5%>C-3, 1.1% during the experimental periods. The SOC change rate decreased with increasing carbonized biomass rate. It was appeared that soybean yields were $476.9kg10a^{-1}$ in the control, and ranged from 453.6 to $527.3kg10a^{-1}$ in the treatments. However, significant difference was not found among the treatments. It might be considered that the experimental results will be applied to soil carbon sequestration for future study.

A Study on the Influence of the Organic Matter Contents in Soil Deposited of Chlorine Gas (염소의 토양 침적특성에 미치는 토양 내 유기물 함량의 영향)

  • Song, Bo Hee;Lee, Kyung Eun;Yim, Sang Sik;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • In the event of toxic gas accidents, soil deposition is a main factor which has an effect on extent of the damage. In this study, it presents the influence of soil deposition properties according to the change of soil depth and the organic matter contents in soil. In this experimentation, the soil deposition device developed in Air Force Research Laboratory in USA is recreated. The tested samples of mixing soil have each value of the organic matter contents. After a variety of synthetic soil were exposed to constant Cl2 concentration, the chlorinity is measured using an anion exchange chromatography(ICS-1100) to quantify the mount of deposition. As the results, the increase of soil depth causes an decreased soil deposition and the increase of exposure time causes an increased soil deposition in surface. Also, the increase of soil deposition mainly depended on the organic matter contents in surface.

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Compressive Strength Characteristics of Cement Mixing Lightweight Soil For Recycling of Dredged Soil in Nakdong River Estuary (낙동강 하구역 준설토 재활용을 위한 시멘트 혼합경량토의 압축강도 특성 연구)

  • KIM YUN-TAE;KIM HONG-JOO;KWON YONG-KYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.7-15
    • /
    • 2006
  • In this research, the behavior characteristics of cement mixing lightweight soil (CMLS) for recycling of dredged soil in the Nakdong River estuary are experimentally investigated. CMLS is composed of the dredged soil from Nakdong River estuary, cement, and air foam. For this purpose, uniaxial compression tests are carried out for artificially prepared specimens of CMLS, with various initial water contents, cement contents, and mixing ratio of dredged soils. The experimental results of CMLS indicated that the compressive strength is strongly influenced by the cement contents, rather than water contents and air foam. Compressive strength of CMLS increased with an increase in cement content, while it decreased with an increase in water content and air foam content. It was also found that the modulus of deformation E50 was in a range of 44 to 128 times greater than the value of uniaxial compressive strength, cured in 28 days.

Effect of Light Intensity and Soil Water Regimes on the Growth of Ginseng (Panax ginseng C. A. Meyer) Seedling. (1 묘포의 광도및 토양함수량이 인삼의 생육에 미치는 영향)

  • Lee, S.S;Lee, C.H.;Park, H.
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 1984
  • This experiment was carried out to study the effects of light intensity and soil water regimes on the growth of ginseng seedling. The results were as follows: 1. The maximum light intensity and optimum temperature in 1,le photosynthesis of ginseng seedling were 10,000 lux and 23 $^{\circ}C$. Respiration rate was increased at high temperature. 2. Air and soil temperature under the shading were increased as the increase of light intensity but soil water contents were decreased as the increase of light intensity, whereas air and soil temperature were decreased as the increase of precipitation under the shade b5: soil water contents were increased as the increase of precipitation under the shade. 3. The higher the transmittance of the shade, the greater the specific leaf weight (S.L.W.) and stomatal density. In contrast, however, the contents of total chlorophyll, chlorophyll a and b, and stomatal length was decreased. There was no any significant difference light intensity of the a/b ratio of chlorophyll. 4. The highest photosynthesis was occurred in ginseng leaves grown under the shade 5% L.T.R. and net photosynthesis rates increased with increasing soil water contents. 5. Optimum condition for usable seedling yield were 5% L.T.R. and 3.3% precipitation under the shade. Useless seedling increased with increasing precipitation under the shade.

  • PDF

Ecological Studies on the Halophyte Communities at Western and Southern Coast in Korea (III) On the Soil Properties, Species Diversity and Mineral Cyclings in Reclaimed Soil in Incheon (해변 염생식물군집에 대한 생태학적 연구(III) 인천 간척지의 토지환경, 종의 다의성 및 염류순환에 대하여)

  • 김준호
    • Journal of Plant Biology
    • /
    • v.26 no.2
    • /
    • pp.53-71
    • /
    • 1983
  • Physicochemical properties of soil, mineral cyclings, production of plants, and relationship between sodium(Na) content and progresses of plant communities were studied in a coastal salt marsh in Incheon. Contents of Na, available phosphorus(A-P) and value of electric conductivity of soil decreased in order of Salicornia herbacea, Limonium tetragonum, Phragmites communis and Zoysia sinica communities, but contents of organic matter, total nitrogen(T-N) and calcium(Ca) of soil were vice versa. Specise diversity index decreased with increase of Na content of soil with correlation coefficient of -0.82. The aboveground biomass of plant communities were 2,981 g.dw/$m^2$ in P. communis, 1,471 g.dw/$m^2$ in Z. sinica, 189g.dw/$m^2$ in S. herbacea and 71 g.dw/$m^2$ L. tetragonum, respectively. Seasonal changes of contents of inorganic nutrients per unit land area coincided with those of biomass of plant communities, however, the maximum contents of K occured earlier than the maximum biomass. Amounts of inorganic nutrients absorbed by plant were directly proportion to its biomass and it was true to reverse in restored amounts of them to soil. In turnover times of nutrients of the communities, it took the shortest time for P but the longest for Ca and P. communis community took the shortest but L. tetragonum the longest. For example, in P. communis turover time of P took one year and that of Na 1,440 years. Lack of P element, therefore, was expected in this study area.

  • PDF

An Experimental Study for Relationship Between Gravity Water Content and Volumetric Water Content Through the Absorptance of Soils Particles (흙 입자의 흡수율을 고려한 체적함수비와 중량함수비의 관계에 관한 실험적 고찰)

  • Lee, Hyoungkyu;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.63-67
    • /
    • 2011
  • Recently, the application of unsaturated-soil theory is concerned in practice. Most characteristics of unsaturated-soil is the relationship between volumetric water contents and matric suction. Usually the volume water contents is estimated by the relationship between gravity water contents and volume water contents because of the difficulty of measurement of volumetric water contents. In this case, the water exists in only void of soil, and the relationship between gravity water contents and volume water contents is calculated by only water in void, but in fact, the water exists in the particle of the soil. So the real volume water contents is different with calculated volume water contents derived by the relationship containing only void water. The object of this research is to revise the relationship between volume water contents and gravity water contents by using the absorptivity tests of the soil particle.

Distribution Properties of Heavy Metals in Goseong Cu Mine Area, Kyungsangnam-do, Korea and Their Pollution Criteria: Applicability of Frequency Analysis and Probability Plot (경남 고성 구리광산 지역의 중금속 분산특성과 오염기준: 빈도분석과 확률도의 적용성)

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2008
  • The frequency analysis and the probability plot were applied to heavy metal contents of soils collected from the Goseong Cu mine area as a statistic method for the determination of the threshold value which was able to partition a population comprising largely dispersed heavy metal contents into the background and the anomalous populations. Almost all the heavy metal contents of soil showed a positively skewed distributions and their cumulative percentage frequencies plotted as a curved lines on logarithmic probability plot which represent a mixture of two or more overlapping populations. Total Cu, Pb and Cd data and extractable Cu and Pb data could be partitioned into background and anomalous populations by using the inflection in each curve. The others showed a normally distributed population or an largely overlapped populations. The threshold values obtained from replotted frequency distributions with the partitioned populations were Cu 400 mg/kg, Pb 450 mg/kg and Cd 3.5 mg/kg in total contents and Cu 40 mg/kg and Pb 12 mg/kg in extractable contents, respectively. The thresholds for total contents are much higher than the tolerable level of soil pollution proposed by Kloke(Cu 100 mg/kg, Pb 100 mg/kg, Cd 3 mg/kg), but those for extractable contents are not exceeded the worrying level of soil pollution proposed by Ministry of Environment(Cu 50 mg/kg, Pb 100 mg/kg). When the threshold values were used as the criteria of soil pollution in the study area, $9{\sim}19%$ of investigated soil population was in polluted level. The spatial distributions of heavy metal contents greater than threshold values showed that polluted soils with heavy metals are restricted within the mountain soils in the vicinity of abandoned mines.

Heavy Metal Contents of Gypsophila oldhamiana Growing on Soil Derived from Serpentine (사문암 지역에서 생육하는 대나물(Gypsophila oldhamiana)의 중금속 함량)

  • 김명희;민일식;송석환
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • To investigate the degrees of toxification in the serpentine areas, serpentinites and adjacent metamorphic rocks and soils from the serpentinite, metamorphic area and transitional area(mixed soil) between serpentinite and metamorphic rocks are collected from the Hongseong-Gun, Chungnam. A plant, Geochemically, the serpentinites are high in the nickel, chromium and cobalt content whereas the metamorphic rocks show high zinc, scandium, molybdenum and iron contents. The serpentine soils are high in the nickel, chromium and cobalt contents whereas the non-serpentine soils show high zinc and iron contents. Heavy metal contents in the G. oldhamiana are high in the serpentine soil relative to the mixed soil. Ratio of the iron to nickel contents for the G. oldhamiana are low in the serpentine soil(49) relative to the mixed soil(216). Of the G. oldhamiana, most of the heavy metal contents except zinc and molybdenum are high in the root relative to the aboveground vegetation. Comparing with rocks, the G. oldhamiana is low in the all of heavy metal contents relative to the serpentinite. Uptake of zinc by the G. oldhamiana is high in the serpentinites and metamorphic rocks whereas uptake of scandium and iron by the G. oldhamiana is very high in the serpentinite area.

  • PDF

Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil (시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향)

  • Lim, Jung-Eun;Ha, Sang-Keun;Lee, Ye-Jin;Yun, Hye-Jin;Cho, Min-Ji;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.