• Title/Summary/Keyword: Soil contamination assessment

Search Result 174, Processing Time 0.027 seconds

Soil Environmental Characteristics Assessment of the Namsan Park in Seoul (서울남산의 토양환경특성 평가)

  • Kim, Ik-Soo;Lee, Jai-Young;Kim, Gyeo-Bung;Eom, Seok-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.22-29
    • /
    • 2008
  • To understand environmental characteristics and contamination assessment of the Namsan Park soil in Seoul, we divided the Namsan map into 33 sectors and sampled mixed soil in depth 0${\sim}$15 cm, in 5${\sim}$10 points at the sites. We analyzed soil samples collected at 21 sectors twice on May and September. The results were as follows. The hue color ranges of the Namsan soil were 2.5YR${\sim}$10YR, the value ranges were 1${\sim}$4, the water rates were 3.1${\sim}$22.3 and the Ignition losses were 3.4${\sim}$10.4%. The average concentration of Cu and Pb were determined 3.374 and 15.000 mg/kg, Cd and As showed very low level. The mean concentrations of Zn and Ni were showed 103.290 and 11.649 mg/kg and this amount is not different from the nationalwide mean in 2005. The mean pH showed 5.41. The Zn, Ni and Cd in the soil of the circular road of Namsan showed 1.33, 1.48, 1.46 times higher than the other sector of the Namsan soil. The corelation coefficient between water rate and ignition loss were 0.720 and the correlation coefficient between Cu and Pb, Cu and Zn showed 0.827, 0.694 respectively. There was weak corelationship between pH and Zn. The Uniformity coefficient (Uc) of all the survey sites was determined below 5 in the range of 1.5${\sim}$4.4.

Heavy Metal Contamination in Surface Water Used for Irrigation: Functional Assessment of the Turag River in Bangladesh

  • Arefin, M. Taufique;Rahman, M. Mokhlesur;Wahid-U-Zzaman, M.;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.83-90
    • /
    • 2016
  • The aim of the present study was to evaluate the degree of metal contamination of the Turag River water and its suitability for irrigation. Twenty water samples were analyzed for physicochemical parameters and metals viz., calcium, magnesium, potassium (K), sodium, copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni). All water samples were slightly alkaline to alkaline. Regarding electrical conductivity (EC), all samples were suitable for crop in soils with moderate permeability and leaching. Water samples were medium salinity and low alkalinity hazard classes. In terms of total dissolved solids (TDS), all samples were classified as freshwater. As per sodium adsorption ratio (SAR) and soluble sodium percentage (SSP), all samples were classified as excellent. No residual sodium carbonate (RSC) was detected in any of the samples, indicating suitability for irrigation; and all samples were considered very hard. Cr and Mn contents in all samples were above FAO guideline values and, therefore, these metals were considered toxic. Zn, Cu, Pb, Cd, and Ni concentrations were below acceptable limit for irrigation and do not pose a threat to soil environment. Significant relationships were found between EC and TDS, SAR and SSP, SAR and RSC, and SSP and RSC. The combinations of ions such as K-Zn, K-Fe, K-Cu, K-Mn, K-Pb, Zn-Fe, Zn-Cu, Zn-Mn, Fe-Mn, Cu-Mn, Cu-Pb and Mn-Pb exhibited significant correlation. This study revealed that Turag River water samples are contaminated with Cr and Mn. This fact should not be ignored because water contamination by metals may pose a threat to human health through food chain.

Evaluation of Groundwater Contamination Potential of Pesticides Using Groundwater Ubiquity Score in Jeju Island Soils (Groundwater Ubiquity Score를 이용한 제주도 토양 특성별 농약의 지하수 오염가능성 평가)

  • Hyun, Hae-Nam;Jang, Gong-Man;Oh, Sang-Sil;Chung, Jong-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.144-153
    • /
    • 2007
  • One of the most recent issues facing the pesticides regulatory process is the assessment of the potential for pesticides to leach through soil and appear in groundwater. Since Jeju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water, it is important to identify which pesticides are the most likely to result in groundwater contamination. The objective of this study was to assess groundwater contamination risk of 21 pesticides (12 insecticides, 6 herbicides and 3 fungicides) in Jeju soils using groundwater ubiquity score (GUS). Considering GUS estimated in 21 representative series of Jeju soils, generally herbicides showed relatively higher leaching potentials and insecticides showed lower leaching potentials. Groundwater contamination risk was higher in the order of bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor for herbicides, carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos for insecticides, and metalaxyl > chlorothalonil > triadimefon for fungicides. Among the tested pesticides alachlor, metolachlor, bromacil, ethoprophos and carbofuran were classified as the pesticides of very high or high groundwater contamination potential. Although the ranking of the leaching potential was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties, variation of the relative groundwater contamination potentials of each pesticides in different soils were not significant. Therefore, the above ranking of groundwater contamination risk would be applied in most of Jeju soils. To lower the possibility of pesticide contamination of groundwater, the use of those pesticides classified as high or very high leaching potential should be strictly regulated in Jeju Island.

Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling (다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가)

  • Jeen, Sung-Wook;Jun, Seong-Chun;Kim, Rak-Hyeon;Hwang, Hyoun-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

Investigation and Risk Assessment of Heavy Metals Contamination around an Abandoned Metal Mine in Korea

  • Lee, Jong-Wha;Kwak, Soon-Sun;Hong, Sung-Chul;Park, Sang-Il;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Recently, heavy metals contamination of the agricultural soil and crops surrounding mining areas has been identified as one of the most serious environmental problems in South Korea. The Ministry of the Environment in Korea conducted a Preliminary National Environmental Health Survey (PNEHS) in abandoned metal mines in 2007. The priority for a subsequent detailed examination was ranked from the results of PNEHS. The studied mine which was ranked as being of the highest priority is located in the midwestern part of Korea and was operated from 1911 to 1985. In this study, the contamination levels of the heavy metals in the abandoned metal mine were investigated. From the results, the average daily dose (ADD), target hazard quotient (THQ) and target cancer risk of the heavy metals were evaluated. The concentration of arsenic (As) in all of the tailings from the mine was higher than its countermeasure standard of Korea. In particular, the highest concentration of As, 330 mg/kg, was up to 15 times higher than its countermeasure standard. The average concentration of As in agricultural soils was higher than the warning standard of Korea, and higher than its countermeasure standard at six sites. The average concentrations of the analyzed heavy metals in agricultural soil were below the warning standard, but concentrations of cadmium (Cd) and lead (Pb) at 4 sites were higher than its warning standard. The average concentration of As in surface water exceeded the warning standard of Korea. The value of the THQ of As for the tailings was higher than the health protection standard 1. The value of THQ of As for the farmlands was lower than the standard, while the hazard index (HI) of As was higher than the standard. The value of target cancer risk (TCR) of As, $6.44{\times}10^{-4}$, were higher than the health protection standard of a lifetime risk for TCR at $1{\times}10^{-6}$. This suggests that the residents around the metal mines are exposed to As pollution with a carcinogenic risk.

Assessment of Radionuclides(Co, Sr) Adsorption and Desorption Characteristics in Soil Using Modified Clay and Fish Bones (개질 점토 및 생선뼈를 이용한 토양 내 방사성 핵종(Co, Sr) 흡착 및 탈착 특성 평가)

  • Kang Kyungchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.58-70
    • /
    • 2023
  • The improper management of radioactive waste or accidents caused by natural disasters can result in the release of radioactive materials into the surrounding environment, potentially leading to soil and groundwater contamination by radionuclides. In this study, adsorption-desorption behaviors of the radionuclides (cobalt and strontium) in natural soil, montmorillonite, Mn-PILC, Fe-PILC, and fishbone were investigated. Several models were used to predict adsorption isotherms of radionuclides on various absorbents. Adsorption isotherms of cobalt and strontium in several adsorbents were examined at pH 5.5. The amount of sorbed cobalt and strontium were represented fishbone > natural soil > Mn-PILC > Fe-PILC > montmorillonite and natural soil > Mn-PILC > fishbone > Fe-PILC > montmorillonite, respectively. Adsorption datas were fitted with several models such as Freundlich, Langmuir, Sips, Redlich-Peterson, Khan, and Generalized model. The results of curve fitting showed R2> 0.98 in all of adsorption models, except Sr2+ adsorption onto montmorillonite. For modified clays (Mn-PILC, Fe-PILC), it is suggested that, unlike natural soils and fish bones, there are not only single adsorption mechanisms but also adsorption mechanisms based on chemical adsorption and surface charge. In the case of fish bones, due to the relatively higher adsorption capacity than modified clays and its characteristic of significant desorption, it is expected more suitable for the removal of radionuclides in aquatic environments than for the immobilization of radionuclides in soil.

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.

Surface Water Contamination around the Sudokwon Landfill Site (수도권 매립지 주변의 지표수 오염에 관한 연구)

  • Lee, In-Hyun;Jang, Won;Back, Young;Doh, Kap-Soo;Choi, Jae-Gyu
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.679-688
    • /
    • 1997
  • In order to analyze the water quality variation of surface water around the Sudokwon landfill site, seasonal variations of water temperature, pH, DO. HOD, COD, SS, NH3-N, NO2-N, and NO3-N were examined at 10 sites from January to December, 1996. It was found that the estimates of COD, DO. SS, and $NH_3-N$ were Increased compared with the results of environmental Impact assessment carried out In 1988. Higher estimates of COD, DO, and SS were due to Industrial and agricultural wastewater, and the Increase of NH3-N at Jangdo reservoir strate was due to the leachate from the landfill. In particular, the estimate of 55 was found to be increased by the soil wash from the landfill during the heavy rainy days.

  • PDF

Assessment of Heavy Metal Concentrations in Greenhouse Soils of Gyeongnam Province

  • Son, Daniel;Cho, Hyeon-Ji;Heo, Jae-Young;Lee, Byeong-Jeong;Hong, Kwang-Pyo;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.383-390
    • /
    • 2017
  • Heavy metal contamination of soil might be a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study, the total content of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg) in soils was analyzed, and the difference of heavy metal contents depending on crops, soil characteristics, and topography was compared in 169 greenhouse soils obtained from Gyeongnam Province. The concentrations of the heavy metals were $0.25mg\;kg^{-1}$ (ranged 0.01~0.44) for Cd, $28.94(0.53{\sim}72.63)mg\;kg^{-1}$ for Cr, $26.03(0.5{\sim}166.13)mg\;kg^{-1}$ for Cu, $14.91(1.27{\sim}33.22)mg\;kg^{-1}$ for Ni, $15.76(0.43{\sim}57.1)mg\;kg^{-1}$ for Pb, $119.72(6.33{\sim}239.39)mg\;kg^{-1}$ for Zn, $2.54(0.01{\sim}23.57)mg\;kg^{-1}$ for As, and $0.049(0.012{\sim}0.253)mg\;kg^{-1}$ for Hg in topsoils. The concentrations of Pb and As in topsoil were highest in green pepper and those of Cd, Cr, and Ni were highest in melon. In addition, the concentrations of Cr and Ni were highest in diluvial terrace compared with the other topographies. Higher concentrations of Cd, Cr, and Ni were found in silty clay loam and silt loam soils than sandy loam and loam soils.

A Case Study of Site Investigation on OO Gas Station (국내토양오염 유발시설별 오염현황 조사 I -OO인근주유소 오염현황조사-)

  • 김무훈
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 1997
  • The purpose of this study is to assess contaminant transfer and environmental impacts to the surroundings by inadequate control of USTs. Several methodologies can be used in sampling procedure for the site assessment depending on the appearance of contaminants on the site and their types. In this case study because of site contaminants, randomized and/or triangle matrix techniques were used. As a result, the composition of materials in OO gas station were appeared in several status. From 1 to 2.5m depth, the soil was composed of silty sand and gravel, around 4m depth, weathered rock was appeared. Based on the preliminary and actual site investigation by DPT methodologies on the width and depth of the site with analysis of BTEX and TPH, no contamination was found in OO gas station, however, in one point because of careless dumping after refill by oil company, about 1731. 5 ppm of TPH appeared.

  • PDF