• Title/Summary/Keyword: Soil column test

Search Result 251, Processing Time 0.035 seconds

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Correlation of Soil Particle Distribution and Hydrodynamic Dispersion Mechanism in Ununiformed Soils Through Laboratory Column Tests (실내주상실험에 의한 불균일한 토양의 입도와 수리분산기작의 상관성 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.28-34
    • /
    • 2006
  • Laboratory column tests using $Cl^-$ tracer were conducted to study the correlation of soil particle distribution and hydrodynamic dispersion mechanism with three kinds of ununiformed soil samples, in which the ratio of gravel and sand versus silt and clay is 24.5 for S-1 soil, 4.48 for S-2 soil, and 0.4 for S-3 soil. Chloride breakthrough curves with time were fitted with gaussian functions. The relative concentrations of chloride were converged to 1.0 after 0.7 hours for S-1, 6.3 hours for S-2, and 389 hours for S-3. Average linear velocity, longitudinal dispersion coefficient, and longitudinal dispersivity were calculated by chloride breakthrough curves. Longitudinal dispersion coefficients were $1.20{\times}10^{-4}\;m^2/sec$ for S-1, $8.87{\times}10^{-7}\;m^2/sec$ for S-2, and $1.94{\times}10^{-9}\;m^2/sec$ for S-3. Peclet numbers calculated by the molecular diffusion coefficient of chloride and the mean grain diameters of soils were $2.59{\times}10^2$ for S-1, $6.27{\times}10^0$ for S-2, and $1.35{\times}10^{-4}$ for S-3. Mechanical dispersion was dominant for the hydrodynamic dispersion mechanism of S-1. Both mechanical dispersion and molecular diffusion were dominant for the hydrodynamic dispersion mechanism of S-2, but mechanical dispersion was ascendant over molecular diffusion. Hydrodynamic dispersion in S-3 was occurred mainly by molecular diffusion. When plotting three soils on the graph of $D_L/D_m$ versus Peclet number produced by Bijeljic and Blunt (2006), the values of $D_L/D_m$ for S-1 and S-2 were more than 2.0 order compared to their graph. S-3 was not plotted on their graph because the Peclet number was as small as $1.35{\times}10^{-4}$.

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

Removal of Nitrate in Column Reactors Using Surfactant Modified Zeolite (SMZ를 이용한 컬럼반응조 내 질산성 질소의 제거)

  • 박규홍;이동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • The objective of this study was to investigate the characteristics of nitrate removal by conducting the column test in order to see the performance of surfactant modified zeolite (SMZ) as a permeable reactive barrier material. The prediction of nitrate removal was tested using the one-dimensional advective-dispersive model fitted to the experimental breakthrough curve. A methodology for scaling up to in-situ permeable reactive barrier was also proposed. The breakthrough of nitrate in the column packed with SMZ was well predicted using linear equilibrium adsorption model. The breakthrough time and half-life obtained by breakthrough experiment with variation of flowrates were decreased with the increase of flowrates. When 10㎥/day of groundwater containing the 50 mg/l of nitrate is to be treated to satisfy the potable water quality criteria (10 mg/l) by SMZ reactive barrier, 300 tons of SMZ and about 6 years of breakthrough time will be required, suggesting that 165 million wons are needed as barrier material expenses in each 6 years besides the initial design and construction expenses and the minimal monitoring and maintenance expenses.

Elucidation of Environment Factors Affecting the Differences in the Half-Life of the Insecticide Cyfluthrin in Soil between Field and Laboratory Tests (포장과 실내실험에서 살충제 Cyfluthrin의 토양 중 반감기 차이에 미치는 환경요인 구명)

  • Lim, Bang-Hyun;Lim, Yo-Sup;Choi, Yong-Hwa;Han, Seong-Soo
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.291-297
    • /
    • 2000
  • This study was conducted to find out the environmental factors affecting the differences in the half-life of the insecticide cyfluthrin in soil between field and laboratory tests carried out in 1998. Degradation and leaching of cyfluthrin in soil were examined under various environmental conditions that were considered to affect the residuality. Cyfluthrin was degraded 1.9 times faster in non-sterilized soil than in sterilized soil and 1.2 times at $25^{\circ}C$ than at $15^{\circ}C$. The half-lives of cyfluthrin were 61.4 days under the dark condition and 4.5 days under sunlight, and those were 11.8 days under the open condition and 23.8 days under the closed condition. The half-lives of the authentic compound and the commercial product of cyfluthrin were 15 and 1 day in the field test and 26 and 3 days in the laboratory test, respectively. Cyfluthrin was rapidly degraded with an increase in soil moisture content and decomposed faster in the alkaline solution of pH 12 than in the acidic solution of pH 3, but the half-life of cyfluthrin did not make any difference between pH 6.4 of the field test soil and pH 5.6 of the laboratory test soil. Cyfluthrin was immobile in soil from the results that $81{\sim}94%$ of the initial amount remained in the $0{\sim}2\;cm$ layer of the soil column regardless of the amount and time of rainfall after the chemical treatments. From viewing the abovementioned results, soil moisture content, sunlight and formulation type affected greatly soil microbes and volatilization affected slightly, and temperature, pH and rainfall did not affect the big difference in the half-life of cyfluthrin in soil between the field and laboratory tests in the year of 1998.

  • PDF

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Feasibility Study on the Remediation of Zn-contaminated Railroad Soil using Various Washing Agents (세척제를 이용한 아연오염 철도토양의 정화 타당성 연구)

  • Park, Sung-Woo;Lee, Jae-Young;Kwon, Tae-Soon;Kim, Kyung-Jo;Chung, Keun-Yook;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • In this study, the feasibility of soil washing and soil flushing was investigated to treat Zn-contaminated railroad soil. Various organic acids including ethylene diamine tetraacetic acid (EDTA) and citric acid as well as inorganic acids such as hydrochloric acid (HCl) and phosphoric acid were tested to evaluate washing efficiency. Generally, inorganic acid showed higher removal efficiency compared to organic acids. Particularly, EDTA, well known as the most effective washing agent for removal of heavy metals from soil, was not efficient to remove zinc in this study. Among washing agents tested in this study, HCl was the most effective. However, it is not effective to use HCl solution over 0.1 M concentration. Sequential process using HCl was effective to enhance the removal efficiency of zinc. In column test, the removal efficiency of Zn was 27%. Accordingly, it is feasible to treat Zn-contaminated railroad soil using soil washing or flushing with HCI.

Determination of Residual Concentration and Half-life Time in Soils of Imidazole Fungicide Prochloraz (Imidazole계 살균제 Prochloraz의 토양 중 잔류량과 반감기분석)

  • Choi, Yong Hwa;Han, Seong Soo;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • The residual analysis and half-life time of imidazole fungicide prochloraz in soils (silty clay) were investigated by gas chromatography equipped electron capture detector (GC-ECD). The soil samples were extracted acetone/hexane(1:1) solvent and analyzed after separated by $LC-NH_2$ Sep-Pak solid column. Linear sensitivity of standard calibration curve was Y = 268.8600X + 0.0664, $R^2=0.9998$ between 0.05~1.00 ng. The detection limit was 0.02 mg/L and the average recoveries were 94.5~97.3% from the standard additional experiments with 0.10 and 0.40 mg/L. The half-life time was 24.4 days in room laboratory and 7.6 days in the field test soil.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.