• Title/Summary/Keyword: Soil carbon sequestration

Search Result 97, Processing Time 0.026 seconds

Assessment of an Optimum Biochar Application Rate for Tomato(Solanum lycopersicum L.) Cultivation (토마토 재배를 위한 바이오차 최적시용 비율 평가)

  • Park, Do-Gyun;Hong, Seung-Gil;Jang, Eunsuk;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Objective of this study was to evaluate an optimum biochar application rate and estimate the carbon sequestration based on the soil chemical properties and growth responses for biochar application during tomatoes cultivation. The treatments consisted of control as recommended application rates of fertilizers, 0.01%, 0.03%, 0.05%, and 0.07% of biochar application(w/w, biochar:soil). For effects of soil chemical properties, the $NO_3-N$contents in the soil were peaked at 9 days after transplanting. But there was not significant difference(p>0.05) among the treatments during cultivation periods. However, $NH_4-N$ contents in the biochar treatment were lower than the control until 14 days of transplanting. $P_2O_5$ contents in the biochar treatments were lower than that of the control until 19 days after transplanting except 0.01% of biochar application plot. $K_2O$ contents in soils treated with 0.01% and 0.03% of biochar were higher until 6 days after transplanting than that in the control. For N use efficiency of biochar application, it was observed that the 0.05% biochar application plot was highest among the treatments. The highest carbon sequestration was estimated at $2.83mg\;kg^{-1}$ for 0.03% of biochar application. However, it is considered that the optimum biochar application rate was 0.05% for tomato cultivation, considering the growth characteristics and yield components.

Growth and carbon storage of black saxaul in afforested areas of the Aralkum Desert

  • Chang, Hanna;An, Jiae;Khamzina, Asia;Lee, Woo-Kyun;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.618-624
    • /
    • 2019
  • This study aimed to determine the growth and carbon storage of planted Haloxylon aphyllum in the Aralkum Desert in Kazakhstan. Six sites afforested in 2000, 2005, 2009, 2010, 2013, and 2017 were selected. The root collar diameter(cm) and height(m) were measured for all H. aphyllum in 30 m×44 m plots. Biomass accumulation (g m-2) and carbon storage(C g m-2) were calculated using allometric equations and the carbon concentration data of Haloxylon species. The diameters varied from 2.5 cm to 4.3 cm and the height varied from 106.2 cm to 223.7 cm. The growth of H. aphyllum was not linearly related to the afforestation year or soil properties. Tree growth might have been influenced by variations in the microclimate, such as temperature, precipitation, and dust storms. The mean total biomass accumulation was 20.57g m-2 and ranged from 2.42 g m-2 to 64.53 g m-2. The mean carbon storage was 9.70C g m-2 and ranged from 1.12 C g m-2 to 30.61 C g m-2. These biomass and carbon storage estimates were smaller than those reported for other Central Asian deserts, but afforestation enabled the generation of vegetative cover and consequently, carbon sequestration in the manmade Aralkum Desert.

Comparative Assessment of Quantitative Methods determining the Amount of Calcium Carbonate Minerals derived from Biocalcification (생물학적 칼슘화에 의해 생성된 CaCO3 광물의 정량분석 방법 비교 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Cheon, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.1-6
    • /
    • 2013
  • This study was performed to develop a method for quantitative analysis obtaining the amount of calcium carbonate minerals formed when Ca salts biomimetically reacted with carbon dioxide. There were two methods compared; 1) volumetric calcimeter method that determining the amount of released carbon dioxide after calcium carbonate minerals were acidified by 4N HCl and 2) Thermogravimetry-Differential Thermal Analysis (TG-DTA) adopting differential decomposition temperature breaking-up the structural link within calcium carbonate minerals. The comparisons were made by batch experiment (i.e., biocalcification process) along with control (i.e., nominal concentration of $CaCO_3$ prepared). For the control, TG-DTA took a minor root mean square deviation (RMSD) of 1.1~5.9 mg, whereas volumetric calcimeter exposed a greater RMSD of 28.3 mg. For the biocalcification, the amount of $CaCO_3$ was more precisely obtained for TG-DTA rather than that of volumetric calcimeter. It was decided that TG-DTA was more successfully used for quantitative analysis to observe the amount of calcium carbonate minerals derived from biocalcification.

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.

Floristic Composition and Phytomass in the Drawdown Zone of the Soyangho Reservoir, Korea

  • Cho, Hyunsuk;Jin, Seung-Nam;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.94-104
    • /
    • 2018
  • The Soyangho Reservoir in Korea has a large drawdown zone, with an annual maximum water level fluctuation of 37 m due to dam operations to maintain a stable water supply and control flooding, especially during the monsoon period. The floristic composition, distribution and biomass of the major plant communities in the drawdown zone of the Soyangho Reservoir were assessed in order to understand their responses to the wide water level fluctuation. Species richness of vascular plants was low, and species composition was dominated by herbaceous annuals. Principal coordinates analysis using both flora and environmental data identified slope angle and the distance from the dam as important factors determining floristic composition. The species richness was low in the steep drawdown zone close to the dam, where much of the soil surface was almost devoid of vegetation. In shallower slopes, distant from the dam plant communities composed of mainly annuals were found. The large fluctuation in water level exposed soil where these annuals could establish. An overall biomass of 122 t (metric tons) Dry Matter was estimated for the reservoir, containing ca 3.6 t N (nitrogen) and ca 0.3 t P (phosphorus); the role of the vegetation of the drawdown zone in carbon sequestration and water pollution were briefly discussed.

Soil Carbon and Microbial Activity Influenced by Pasture and Rice Paddy Management (목초재배지 및 벼논 관리 변화에 따른 토양 탄소 및 미생물 활성도)

  • Yoo, Ga-Young;Kim, Hyun-Jin;Kim, Ye-Sol;Jung, Min-Hung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.435-443
    • /
    • 2012
  • This study investigated soil carbon storage and microbial activities influenced by different management practices in rice paddies and pastures. Soils under a single-crop farming of rice (CON) and rice-Italian ryegrass rotation farming (IRG) were compared in Jangheung, Jeollanam-do, Seocheon and Cheonan, Chungcheongnam-do. Soils from pastures were analyzed to investigate the effect of duration period (P1, P2, P3) in Namwon, Jeollabuk-do and Seosan, Chungcheongnam-do. In rice paddy, total and particulate carbon (PC) concentrations in the IRG soils were significantly higher than those in the CON soils both in Jangheung and Seocheon where the IRG has been established for three years, whereas carbon concentrations were not significantly different in Cheonan where IRG planting history is only one year. In rice paddy soils, PC was suggested as an early indicator to monitor changes in soil carbon storage followed by adopting different management practices. In pasture, total and PC concentrations increased with duration period especially in the 0-5 cm soils. Contrary to the rice paddy soils, the magnitude of change in PC concentration is not as great as that in total carbon concentration, implying that there is a need to develop a new early indicator other than PC using different fractionation scheme. The soil carbon storage in pasture also increased with years since establishment and the increasing rate was significantly greater in the early stage (0-5 yrs) than the later one (> 5 yrs). Microbial activities measured from fluorescein diacetate (FDA) hydrolysis analysis were significantly lower in the IRG soils than CON soils, whereas no difference was observed in the pastures of different ages. This shows that FDA activity is not a sensitive indicator to differentiate soil qualities influenced by management practices if it is used by itself.

Analysis of Environmental Impacts for the Biochar Production and Soil Application (폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.461-468
    • /
    • 2014
  • Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.

Developing Woody Crops for the Enhancement of Ecosystem Services under Changing Climates in the North Central United States

  • Zalesny, Ronald S. Jr.;Headlee, William L.
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.78-90
    • /
    • 2015
  • Short rotation woody crops belonging to the genera Populus L., Salix L., Pinus L., and Eucalyptus L'Her. have provided broad economic and ecological benefits throughout the world, including afforestation and reforestation along urban to rural gradients. Within the genus Populus, cottonwoods, poplars, aspens, and their hybrids (hereafter referred to as poplars) have been shown to exhibit favorable genotype ${\times}$ environment interactions, especially in the face of changing climates. Similar growth responses have been reported for Pinus, especially with white pine (Pinus strobus L.) in the North Central United States. This has led to current research priorities focused on ecosystem services for both genera. The Millennium Ecosystem Assessment (2005) defines cultural, supporting, provisioning, and regulating ecosystem services. The overarching objective of this paper was to synthesize information about the potential of poplars to provide multiple ecosystem services when grown at sites with varying soil and climate conditions across landscape gradients from urban to rural areas. Specific objectives included: 1) providing background of the United States Forest Service and its Research and Development branch, 2) integrating knowledge of current poplar breeding and development with biomass provisioning and carbon regulating ecosystem services as they relate to changing climates in the North Central United States, and 3) providing a case study illustrating this integration through comparisons of poplar with white pine. Our results were evaluated in the context of climate change mitigation, with specific focus on selection of favorable genotypes for sequestering atmospheric carbon and reducing fossil fuel carbon emissions.

Study on Evaluation of Carbon Emission and Sequestration in Pear Orchard (배 재배지 단위의 탄소 배출량 및 흡수량 평가 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Sho, Kyuho;Lee, Jaeseok
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2016
  • Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about $25.6ton\;CO_2\;ha^{-1}$ by soil respiration. And $27.9ton\;CO_2\;ha^{-1}$ was sequestrated by biomass growth. Also about $12.6ton\;CO_2\;ha^{-1}$ was stored at pruning branches and about $5.2ton\;CO_2\;ha^{-1}$ for photosynthesis of herbs. As a result, 25.6 ton of $CO_2$ per ha is annually released to atmosphere. At the same time about 45.7 ton of $CO_2$ was sequestrated from atmosphere. When it sum up the amount of $CO_2$ release and sequestration, approximately $20.1ton\;CO_2\;ha^{-1}$ was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges ($17.8ton\;CO_2\;ha^{-1}\;yr^{-1}$) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of $CO_2$ dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.