• Title/Summary/Keyword: Soil box

Search Result 295, Processing Time 0.026 seconds

Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types (다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험)

  • Ha, Jeong Gon;Jo, Seong Bae;Park, Heon Joon;Kim, Dong Kwan;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF

Experimental Study on the End Bearing Capacity of the Pile in a Group Pile (무리말뚝을 구성하는 개별말뚝의 선단지지력에 대한 실험연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.27-38
    • /
    • 2019
  • Bearing capacity of a pile in homogeneous soil is the sum of end bearing and skin resistance, and the skin resistance is more prominent in sandy soil. Bearing capacity of a pile in pile groups especially in sandy ground should be designed under the consideration of the influence by the adjacent piles. In this study, the end bearing capacity of a pile in pile groups was experimentally investigated. For this purpose, piles were installed in sandy ground in a circular test box, and end bearing - settlement behavior of the pile was measured while the pile was loaded. As the results, end bearing - settlement relation curves of the piles showed a distinct limit value. Limit value of the end bearing was little affected by skin friction and pile diameter, and it became a constant value as pile penetrates deeper. End bearing was not affected by the adjacent piles in a group of piles, when their clearance was larger than the pile diameter.

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

A Toolbox Approach for the Environmental Site Assessment of a Chemical Plant in a Coastal Area (연안지역 화학공장부지의 부지환경평가를 위한 복합조사기법의 적응)

  • Choi, Seung-Jin;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.419-443
    • /
    • 2007
  • Recently, the branch-out of foreign companies into domestic markets through M&A and the opened followed by the Free Trade Agreement(FTA) with America have made the environmental site assessments of specific site more necessary. In this study, through case study of conducting actual environmental site assessment by use of a toolbox approach at a large scale of chemical plant with various contaminants located in a coastal area, the problems of guideline of domestic environmental assessment of soil were complemented. And an efficient and economical assessment was achieved. All six steps such as basic investigation, environmental site history survey, sampling and analysis, installation of monitoring wells and hydrogeological survey, and data interpretation were conducted in this study. All results of document survey, geological lineament analysis, field geology survey of surrounding area, geophysical prospecting of the site, hydraulic conductivity, measurement of groundwater flow rate and direction, sampling and analysis at each step were associated and estimated as an integrated tool box approach. As a consequence of this study, toolbox approaches were very useful techniques for contamination level and site characterization of subsurface media. The given conditions to conduct a basic survey for domestic soil environment assessment of site by use of existing documents, as well as interviews with the owner/manager/user of all adjacent properties and thorough review of all practically reviewable records pertaining to the property and surrounding properties within "Guideline for Soil Environment Assessment" radii are very poor. As a result, the application of toolbox approach in the environment site assessment of site is not only more efficient and economical, but also could be very useful assessment to integrate the soil and groundwater contamination.

Conservativeness of Response Displacement Method used in Seismic Response Analysis of Power Cable Tunnels (전력구의 지진응답해석법에 사용되는 응답변위법의 보수성 평가)

  • Lim, Jae-Sung;Yang, Dae-Seung;Hwang, Kyeong-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.243-254
    • /
    • 2021
  • In this study, the conservatism of the response displacement method (RDM) for the seismic response analysis of box-shaped power cable tunnels was evaluated. A total of 50 examples were used considering the cross-sections of 25 power cable tunnels and two soil conditions for each power cable tunnel. The following three methods were applied for the analysis by the RDM: (1) single cosine method, (2) double cosine method, and (3) dynamic free-field analysis method. A refined dynamic analysis method considering soil-structure interaction (SSI) was employed to compare the conservatism of the RDM. The double cosine method demonstrated the most conservative result, while the dynamic free-field analysis method yielded the least deviation. The soil stiffness reduction factor, C, for the double cosine method was recommended to be 0.9 and 0.7 for the operational performance and collapse prevention levels, respectively, to ensure a probability of at least 80% that the member force by the RDM is larger than that of dynamic SSI analysis.

Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.771-784
    • /
    • 2018
  • This study aims to investigate the stochastic response of isolated and non-isolated highway bridges subjected to spatially varying earthquake ground motion model. This model includes wave passage, incoherence and site response effects. The wave passage effect is examined by using various wave velocities. The incoherency effect is investigated by considering the Harichandran and Vanmarcke coherency model. The site response effect is considered by selecting homogeneous firm, medium and soft soil types where the bridge supports are constructed. The ground motion is described by power spectral density function and applied to each support point. Triple concave friction pendulum (TCFP) bearing which is more effective than other seismic isolation systems is used for seismic isolation. To implement seismic isolation procedure, TCFP bearing devices are placed at each of the support points of the deck. In the analysis, the bridge selected is a five-span featuring cast-in-place concrete box girder superstructure supported on reinforced concrete columns. Foundation supported highway bridge is regarded as three regions and compared its different situation in the stochastic analysis. The stochastic analyses results show that spatially varying ground motion has important effects on the stochastic response of the isolated and non-isolated bridges as long span structures.

Experimental Evaluation of Construction Performance and Long-term Settlements in Soft Ground Breakwater (연약지반 방파제의 시공성능 및 장기침하에 관한 실험적 평가)

  • Kwon, O-Soon;Jang, In-Sung;Park, Woo-Sun;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.385-392
    • /
    • 2003
  • A new type of soft ground breakwater was recently developed, which does not need ground improvement because of light weight and structural characteristics. The various studies about consolidation settlements and lateral behavior of proposed soft ground breakwater have been conducted. But, the systematic investigations on the construction performance and long-term settlements of new type breakwater has not been accomplished. In this study, construction simulation of soft ground breakwater with soil box model test and experiments of the long-term wave loaded breakwater were performed. The results of test shows that it is possible to compensate differential settlements by dead loading and/or suction pressure, and to reduce the consolidation settlements by preloading method. It was also found that the vertical and lateral displacements of long-term wave loaded breakwater were negligible.

A Study on application of Trapezoidal Steel Box Tunnelling Method (지중압입체를 이용한 지하구조물 축조방법의 적용성 연구)

  • Jun, Sung Bai
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.138-154
    • /
    • 2008
  • The conventional non-dig underground structure building method which made an appearance to reduce the social and environmental costs and maximize the efficiency of the social overhead capital facilities could not help being uneconomical because of many problems such as unnecessary excessive excavation, water leakage, obstacle interference, difficulty of curvilinear application and connection complexity between propelled and injected bodies due to indiscriminate application of small and large circular steel pipes without consideration of the site conditions. The T.S.T.M, in which a protruded square tube is applied as a propulsion and injection body in a design that considered site conditions such as ground condition, depth of soil and live load, was able to be economical as it solved the problems of water resistance, minimization of obstacle interference and curvilinearity, and we can see that it can be applied to all grounds by utilizing or complementing the target ground in terms of engineering. Also in configuring the transverse section, it is possible to not only secure excellent structural safety but also implement all of the above engineering characteristics not only in the square cross section but also in the arch cross section, so it was possible to build structures on any section or ground, and we could confirm the LCC reduction effect and the VE effect.

  • PDF