• Title/Summary/Keyword: Soil box

Search Result 295, Processing Time 0.029 seconds

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

A Study on the Behavior of Reinforced Clay Subjected to Direct Shear (직접전단을 받는 보강점토의 거동에 관한 연구)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.67-82
    • /
    • 1994
  • In this study, a reinforced clay model based on the limit equilibrium of forces under direct shear was proposed to predict shear strength increase in clays induced by the steel inclusion. The model accounted for the effects of orientation of inclusion, length, bonding stress between clay and indclusion and passive soil resistance 1 induced by the inclusion movement, on the behavior of reinforced clays. In order to compare with the theoretical predictions, direct shear tests were performed using a direct shear apparatus formed of an open shear box. Also pull-out tests were conducted to determine the bonding stress between the inclusion and clay. From the experimental results, the increase or decrease in shear strength of reinforced clay samples was found to depend on the orientation of inclusionas well as water content of clay samples. From the comparison of theoretical predictions and experimental results, it was found that the theore tical model predicted reasonably well the influence of orientation of the inclusion as well as passive soil resistance induced by the inclusion movement on the mechanical behavior of reinforced clays.

  • PDF

A Study on Earth Pressure in Unsymmetrical Narrow Backfill Space (비대칭 좁은 공간에서의 되메움 토압에 관한 연구)

  • 문창열
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.261-277
    • /
    • 1999
  • The horizontal and vertical earth pressures in backfill space which is narrowly excavated like ditch are affected by the share of ditch backfill space and the wall friction between excavated surface and backfill soil. In this paper, for the excavated surface the Handy's equation of a symmetric vertical case and the Kellogg's equation of a symmetric sloped one are modified to show the minor principal stress arch for the unsymmetrical excavated backfill space. Compared with the soil test box result, a similarity in magnitude and distribution of backfill earth pressure shows that the earth pressure has been observed. The backfill earth pressure in unsymmetrically sloped space has been shown twice as much as the one in vertically excavated space and also remarkable decline of arching for the former case. It is verified that the earth pressure equation should account the shape and size of backfill space to calculate the earth pressure for similar structure to the one handled in this study.

  • PDF

A Study on the Materials and Techniques of Outdoor Biotop for Environment-friendly Community (친환경 주거단지 외부공간의 비오톱 조성을 위한 재료 및 기법 연구)

  • Cho, Dong-Gil;Cho, Tong-Buhm
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • This study mainly aims at suggesting plans applicable to the outdoor of environment-friendly communities in Korea by leveraging more natural conditions and materials when creating an outdoor biotop for an environment-friendly community and generating material types and development techniques enabling a natural circulation system. To this end, materials used in the outdoor of environment-friendly communities and traditional residential areas in Korea and biotop materials found in natural areas were examined. First, when the case examples of environment-friendly communities were reviewed, biotop spaces and materials that may function as habitats were hardly found. Materials used in biotop were mainly man-made structures made of artificial or processed materials, such as concrete, stones, bricks, woods and steels. Meanwhile, the outdoor space of traditional Korean villages had stone walls, soil walls, rock piles and composite piles, which composed of natural materials such as rocks, soil and plants, that naturally formed porous spaces along with the introduction of plants and provided habitats for a variety of insects. In natural areas, naturally created biotop spaces, such as rock piles, log piles, old tree deployment, branch piles, hay stacks and defoliated leaves, were found. Meanwhile, when spaces and materials available for biotop creation were reviewed to create an environment-friendly residential complex, they were divided into fences and hedges, green spaces between parks and residential buildings, ponds and waterscape spaces, zones separating pedestrian walks and roadways, breast walls and slope boundary, plant box and pergola. For each space, materials used for creating biotops and that were found in traditional Korean residential areas and natural areas were applied and suggested.

Evaluation of Rhizofiltration for Uranium Removal with Calculation of the Removal Capacity of Raphanus sativus L. (무순(Raphanus sativus L.)의 제거능 계산에 의한 뿌리여과법의 우라늄 제거 가능성 평가)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.43-52
    • /
    • 2015
  • The uranium removal capacity of radish sprouts (Raphanus sativus L.) in groundwater was calculated on the basis of the amount of uranium accumulated in the radish sprouts rather than the concentration in solution, of which process was very limited in previous studies. Continuous rhizofiltration clean-up system was designed to investigate the feasibility of radish sprouts, applying for uranium contaminated groundwater (U concentration: 110 μg/L) taken at Bugogdong, Busan. Six acrylic boxes (10 cm × 30 cm × 10 cm) were connected in a direct series for the continuous rhizofiltration system and 200 g of radish sprouts cultivars was placed in each box. The groundwater was flushed through the system for 48 hours at the constant rate of 5 mL/min. The rhizofiltration system was operated in the phytotron, of which conditions were at 25℃ temperature, 70% of relative humidity, 4,000 Lux illumination (16 hours/day) and 600 mg/L of CO2 concentration. While 14.4 L of contaminated groundwater was treated, the uranium removal efficiency of the radish sprouts (1,200 g in wet weight) was 77.2% and their removal capacities ranged at 152.1 μg/g-239.7 μg/g (the average: 210.8 μg/g), suggesting that the radish sprouts belong to the group of hyper-accumulation species. After the experiment, the sum of U amounts accumulated in radish sprouts and remained in groundwater was 1,472.2 μg and the uranium recovery ratio of this rhizofiltration experiment was 92.9%. From the results, it was investigated that the radish sprouts can remove large amounts of uranium from contaminated groundwater in a short time (few days) because the fast growth rate and the high U accumulation adsorption capacity.

Development of Permanent Reference Electrode for Corrosion Monitoring of Underground Metallic Structures (지중 금속구조물 부식감시를 위한 영구매설용 기준전극 개발)

  • Ha, Y.C.;Bae, J.H.;Ha, T.H.;Lee, H.G.;Lee, J.D.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.532-534
    • /
    • 2004
  • The advancement of electronics and telecommunication technologies has forced the risk management system for underground metallic structures to evolve into the remote monitoring and control system. Especially, facilities such as gas pipelines, oil pipelines and water distribution lines might make hazardous effect on human safety without continuous monitoring and control. As a result, pipeline engineers have applied cathodic protection system to prevent the degradation of their facilities by corrosion and carried out a periodic monitoring of the pipe-to-soil (P/S) potentials at numberous test boxes along their pipelines. The latter action on a road in downtowns, however, is so much dangerous that the inspectors should be ready to suffer the threatening of their lives and maintenance. In order to minimize these social costs and hazards, a stand-alone type corrosion monitoring equipment which can be installed in test box, store the P/S data for given Belied and send the data by wired/wireless telecommunications is under development. In order to obtain the exact P/S data, however, a reference electrode should be located as close to the pipeline as possible. Actually, the measured potential by a conventional portable reference electrode contain inevitably an IR drop portion caused by the current flow from the cathodic protection rectifier or the subway railroad. To minimize this error, it is recommended that the reference electrode should be buried within 10 cm from the pipeline. In this paper, we describe the design parameters for fabricating the permanent type reference electrode and the characteristics of the developed reference electrode.

  • PDF

Pathogenicity in Nursery Box and Symptom Appearance and Yield Damage in Paddy Field by Each Strain of Fusarium moniliforme (Fusarium moniliforme의 Strain 별(別) 육묘상(育苗床)과 본답(本畓)에서 병(病) 발생(發生)과 피해(被害) 해석(解析)에 관한 시험(試驗))

  • Sung, Jae-Mo;Yang, Sung-Suk;Lee, Eun-Jong
    • The Korean Journal of Mycology
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • Strain IV caused highest reduction of germination and caused abnormal elongation of all part of the plant which finally died. Milyang 23 and Nampungbyeo formed mesocotyl. Samnambyeo and Jinjubyeo did not formed mesocotyl on the soil surface in nursery boxes when they were planted on soil infested with each strain of F. moniliforme. Infected seedlings with mesocotyl recovered after transplanting in the the field. The most frequency of Strain IV was isolated from infected rices and this strain was isolated from all part of rice. When rice seedling infected with Strain IV were transplanted in paddy field, most of rice showed Bakanae symptom. Ear emergence of rice was more delayed when seedlings infected with Strain IV were transplanted than that of healthy plant. Number of panicle per hill and grain yield from rice when infected rice seedling by Strain IV were transplanted were more decreased than that of the healthy plant in paddy field.

  • PDF

Ground Subsidence Mechanism by Ground Water Level and Fine Contents (지하수위와 세립분 함유량에 따른 지반함몰 메커니즘)

  • Kim, JinYoung;Lee, SungYeol;Choi, ChangHo;Kang, JaeMo;Kang, KwonSoo;Jeong, HyoJin;Hong, JaeCheol;Lee, JaeSoo;Baek, WonJin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.83-91
    • /
    • 2017
  • Recently, ground subsidence frequently occurs in downtown area. The major causes of the subsidence on the subsurface were the damages of the water supply and sewer pipelines and excavation works in adjacent areas, etc. Because of these various factors, it is not easy to analyze the tendency of occurrence of ground subsidence. The purpose of this study is to clarify the effect of ground subsidence by the change of the fine particle content and ground water level and to establish the ground subsidence mechanism. In this study, a model soil-box was manufactured to simulate the failure of the old sewer pipe which is one of the causes on ground subsidence. And a model test was conducted to investigate the effects of fine contents and ground water level on the cavity occurrence. From the test results, firstly the higher the ground water level, the faster the primary cavity is formed as the seepage stress increases. As a result, the secondary cavity and the ground subsidence rapidly progress due to the relaxation of the surrounding ground. The total amount of discharged soil was decreased as the fine content increased.