• Title/Summary/Keyword: Soil box

Search Result 295, Processing Time 0.031 seconds

Behavior of Shear Zone by Improved Direct Shear Test (개선된 직접전단시험을 이용한 전단영역의 거동)

  • Byeon, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

Effect of Void Formation on Shear Strength of Sand (모래 지반 내에 형성된 공극이 전단강도에 미치는 영향)

  • Choi, Hyun-Seok;Park, Sung-Sik;Kim, Chang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.577-583
    • /
    • 2010
  • In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Beag-ma river sands with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle. Beag-ma river sand was miced with 8% cement ratio and 14% water content and compacted into a shear box. The number and direction embedded into a specimen. After 4 hours curing, a series of direct shear test is performed on the capsule embedded cemented sands. Shear strength of cemented sands with capsules depends on the volume and direction. The volume and direction formed by voids are most important factors in strength. A shear strength of a specimen with large voids decreases up to 39% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments after dissociation and loss of fine particles within soil structure.

  • PDF

A Study on the Effect of. Oil Leakage for Soil Contamination, Plants and Groundwater (오일의 누출이 토양오염, 식생 및 지하수에 주는 영향에 관한 연구)

  • 진성기;도덕현;최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • Our experiment investigated the degree of soil contaimination caused by oil leakage. Each soil sample was taken by boring 5, 8m below the test areas, located 5 to 30m from storage tanks at oil stations. According to the results from a series of laboratory tests(both soxhiet extract test and gas chromatograph test), Traces of a light oil were found in all samples except in Dj8, rocky soil and gasoline and petroleum were not detected. We concluded that soil contamination was caused by the corrosion of storage tanks or alternatively by oil overflow caused during the flooding of underground water seeping into the tank during heavy rain fall or the spillage caused by carelessness during lubrication. Old stations without a concrete box enclosing their metal tanks run a greater risk of oil leakage. To research the effect of oil leakage on plant growth and underground water, We examined the results of research conducted overseas. According to these results, when oil leakage occurs, plant growth is repressed and agricultural crops experience low productivity levels. Also, the contamination of underground water can be serious when oil spreads to the aquifer layer. As a result of these problems, to prevent oil leakage and minimize its contaminating effects at oil stations, it is necessary to improve facilities of storage tanks and have the monitoring system of oil leakage.

  • PDF

Characteristics of Uplift Resistance According to Shape Factor and Contact Area of Wooden Piles (나무말뚝 형상과 접촉면적에 따른 인발저항력 특성)

  • Song, Chang Seob;Kim, Myeong Hwan;Park, Oh Hyun;Woo, Jea Kuen;Kim, Gi Beom
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • Reclaimed land was mainly used as agricultural land for rice production. As a higher value-added business in the agriculture has recently been activated, green houses are being constructed. In case of green house construction on the reclaimed land, it is generally soft ground with high soil water content, so it is important to design the foundation for greenhouse construction. The object of this study, a pull-out test was conducted to derive the base line data of the wooden pile foundation when constructing a green house. To reproduce the actual site, 30% of soil saturation and 70% of soil saturation were created in the soil box. Groove number and depth were set as design factors of the wooden pile, and a pull-out test was conducted. As a result of the test, pull resistance increased as the number of grooves increased, pull-out resistance according to groove depth was different according to soil saturation. Also, after the experiment, we want to compare the set-up effects over time.

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Study on the Exposure Assessment Methodology for Outdoor Air Inhalation Pathways in Site-specific Risk Assessment and Its Application in a TPH-contaminated Site (유류오염부지 시범적용을 통한 실외공기 오염물질흡입 노출경로에 대한 부지특이적 노출량 산정 방안에 대한 고찰)

  • Kim, Sang Hyun;Chung, Hyeonyong;Jeong, Buyun;Noh, Hoe-Jung;Kim, Hyun-Koo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.65-73
    • /
    • 2020
  • Exposure assessment methodology for outdoor air inhalation pathways (i.e., inhalation of volatile compounds and fugitive dust in outdoor air) was investigated. Default values of several parameters currently used in Korea (e.g., Q/C; inverse value of concentration per unit flux, and frs; soil fraction in PM10) may not be suitable and lack site-specificity, as they have been adopted from the risk assessment guidance of the United States or the Netherlands. Such limitation can be addressed to a certain degree by incorporating the volatilization factor (VF) and the particulate emission factor (PEF) with Box model. This approach was applied to an exposure assessment of a site contaminated with petroleum hydrocarbons in Korea. The result indicated that the suggested methodology led to more accurate site-specific exposure assessment for outdoor inhalation pathways. Further work to establish methodology to determine site-specific Q/C values in Korea needs to be done to secure the reliability of the exposure assessment for outdoor air inhalation pathways.

Estimating the Soil Volume Conversion Factor of Weathered Ground with Consideration of Field Situations

  • Jin, Kyu-Nam;Cho, Gye-Chun;Lee, Jung-Min;Ryu, Hee-Hwan;Park, Sung-Wook
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • It is very important for successful construction to estimate the soil volume conversion factor of domestic weathered ground accurately and reasonably. However, it is very difficult to quantify the weathering degree of weathered ground at the field, so that the soil volume conversion factor used in Korea is often dependent upon the standard of foreign countries. Besides, the soil volume conversion factor of domestic weathered ground has been rarely studied and the use and accuracy of the soil volume conversion factor have been questioned persistingly. This study suggests a simple but robust method for estimating the soil volume conversion factor and measuring the weathering degree reasonably, and attempts to establish the utilization of a soil volume conversion factor measurement system based on experimental and analytical results. We made relationship between electrical resistivity and weathering degree presented from weathering index obtained through laboratory tests using field samples, and an estimation method of in-situ weathering degree for granites and a calculation method of soil volume conversion factor using electrical resistivity. And also, we suggested the photogrametry measurement-equipment system for measuring the volume of cargo box and the application plan of stand equipment and RFID for calculating the earth volume and distinguishing buggies in order to design the measurement system for soil volume conversion factor applicable to the field. Ultimately, the Weathered Earth-work Management Program (WEMP) was developed, so field managers may easily obtain the information about earth volume and soil volume conversion factor at the weathered ground.

Efficacy of Starch and PVA (polyvinyl alcohol) for the Suppression of Soil Dust Emissions from Large-scale Construction Sites in Urban Areas (도심 대형사업장의 토양 입자 비산 억제를 위한 Starch와 PVA(polyvinyl alcohol)의 효율성 평가)

  • Choi, Jong-Soo;Kim, Dong-Su;Choi, Yu-Lim;Kim, Jung-Eun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.9-15
    • /
    • 2019
  • Soil dust emitted from large scale construction sites in urban areas has posed a significant health threats to local residents by exacerbating air quality. Water-spraying (moistening) is commonly practiced to lower the dust emission in construction sites, but its long term effectiveness is highly questionable. In this study, the utility of starch and PVA(polyvinyl alcohol) was investigated in suppression of the soil dust emissions in construction sites in Seoul areas. The efficiency of the two suppressants was tested with test soil sample in a lab-scale wind tunnel box under different concentrations of suppressants and soil textures. Starch and PVA showed the superior ability to suppress soil dust emission as compared to moistening, resulting in PM10 and PM2.5 lower than the daily limit values of 30 and 15 ㎍/㎥ respectively. PVA showed higher suppression capability than starch for all conditions. The test soils mixed with suppressants also showed dramatically enhanced aggregate stability compared to the non-treated soil.

An Evaluation of Tree Roots Effect on Soil Reinforcement by Direct Shear Test (일면전단실험에 의한 수목뿌리의 토양보강효과 평가)

  • Cha, Du Song;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.281-286
    • /
    • 2005
  • Trees enhance slope stability against down slope mass movement through the removal of soil water by transpiration and by the mechanical reinforcement of their roots. To assess the magnitude of this reinforcement on natural slope stability, direct shear tests were made on dry sand reinforced with different array types of roots. Pinus koraiensis was used as root specimens. The peak shear resistance at each normal stress level was measured on the rooted and unrooted soil specimens. Increased soil resistance(${\Delta}S$) by roots was calculated using parameters like internal friction angle and cohesion of tested soil and also evaluated the effects of root array in tested soil. As results, we find that shear resistance increased in tested soil shear box as diameters and arrayed numbers of root specimen increased and cross root array in tested soil had a much greater reinforcing effect than other root arrays. Comparison of traditional root-soil model with experiments showed that simulated reinforce strength by the model was different with those obtained by the experiment due to its linearity.

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF