• Title/Summary/Keyword: Soil bacteria

Search Result 1,324, Processing Time 0.021 seconds

Microbial Community in Various Conditions of Soil Microcosm (벤젠과 톨루엔 분해에 적합한 미소환경과 토착미생물군의 분포변화)

  • 이한웅;이상현;이정옥;김현국;이수연;방성호;백두성;김동주;박용근
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • Biological treatment of benzene and toluene contaminated soil was investigated in laboratory microcosm of 16 different types for degrading benzene and toluene by indigenous bacteria. At the experimental conditions of the microcosms fast degrading benzene and toluene, moisture contents were 30% and 60% in a soil gap and content of powdered-activated carbon(PCA) for adhesion of benzene and toluene-degrading bacteria was 1% in total soil mass. At the conclusion of the shifted bacteria community, Case 6 and case 7 were operated until 10 days, and then the total cell number and the number of benzene and toluene degrading bacteria were investigated. The total cell number of Case 6 and Case 7 increased 488 fold and 308 fold of total indigenous cell, respectively. The number of benzene and toluene degrading bacteria increased and maintained the percentages occupied in pre-operating microcosm. Species of benzene and toluene degrading bacteria in microcosm changed from species of Gram negative bacteria to Gram positive bacterial species after soil exposed to benzene and toluene.

  • PDF

A comparison of community structure and denitrifying ratio for denitrifying bacteria dependent on agricultural methods and seasons (농법과 계절에 따른 탈질세균의 군집 구조와 탈질율 비교)

  • Yoon, Jun-Beom;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • We studied soil composition, $N_2O$ production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of $N_2O$ production, the amount of $N_2O$ production was high in May and November soils, but the rate of $N_2O$ production was fast in August soil. The average number of denitrifying bacteria were $1.32{\times}10^4MPN{\cdot}g^{-1}$ in the organic farming soil, $1.17{\times}10^4MPN{\cdot}g^{-1}$ in the emptiness farming soil, and $6.29{\times}10^3MPN{\cdot}g^{-1}$ in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.

Field Applicability Study of Landfarming for Petroleum Hydrocarbons Contaminated Soils (토양 경작법을 이용한 유류오염토양 정화사업 타당성 연구)

  • Jho, Eun Hea;Ryu, Hyerim;Shin, Doyun;Kim, Young-Jin;Choi, Yong Ju;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • The landfarming treatment for the remediation of the petroleum contaminated soil at the returned U.S. Military bases was investigated in this study. Specifically, the bioaugmentation performance using various commercially available petroleum-degrading bacteria was evaluated and the directions for enhancing the performance of the landfarming treatment were suggested. The environmental factors of the soils at the returned U.S. Military bases chosen for remediation indicate that the landfarming treatment can be used as the remediation technique; however, the addition of nitrogen or phosphorus is required. The lab-scale landfarming treatment tests using the model soil and the site soil showed that the degradation efficiency was greater with the model soil than the site soil and that the treatment performance was not affected by the number of bacteria present in the soil in the range of $10^6-10^{12}$ CFU/g. These results suggest that the successful landfarming treatment depends on the petroleum degradability of bacteria used and the environmental conditions during the treatment rather than the number of petroleum-degrading bacteria used.

Effects of Salt-induced Stress on the Fluctuation and Rhizosphere Colonization of Soil Microorganisms (염류(鹽類)의 스트레스가 주요(主要) 토양미생물(土壤微生物)의 변동(變動) 및 근권정착성(根圈定着性)에 미치는 영향(影響))

  • Kwon, Jang-Sik;Suh, Jang-Sun;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.291-300
    • /
    • 1998
  • A study was carried out to evaluate the effect of different salts and their Quantities on the fluctuation and rhizosphere colonization of soil microorganisms. The results obtained are as follows. The electrical conductivities(ECs) of $KNO_3$, $K_2HPO_4$, KCl and $K_2SO_4$ showed negative correlations to the number of gram positive bacteria and gram negative bacteria : the number of bacteria was significantly decreased in the KCl or $KNO_3$ treated group compared to the $K_2HPO_4$ or $K_2SO_4$ treated group. The highest microorganism density of gram negative bacteria, gram positive bacteria and Fusarium sp. in balanced salts-treated soil was observed at $0.5dS\;m^{-1}$, $2.1dS\;m^{-1}$ and $8.0dS\;m^{-1}$ of EC, respectively. The ratio of bacteria to fungi ratio in balanced salts-treated soil substantially decreased as the EC of soil increased. Ten and thirty days after soil treatment with balanced salts, the ratio of bacteria to fungi decreased to 757-1571 and 89-215, respectively. Root colonization density of Fluorescent Pseudomonas in cucumber and tomato significantly decreased as the EC of soil increased, whereas that of Fusarium sp. increased.

  • PDF

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

Effects of Fowl Dropping, Saw Dust and Rice Hull on Soil Microflora in vitro (실내배양에서 생계분, 톱밥 및 왕겨 첨가가 토양미생물상에 미치는 효과)

  • Yang, Chang-Sool;Kong, Hye-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 1996
  • This study was conducted to evaluate the effects of fowl dzopping. saw dust and rice hall on the soil microflora in vitro. The experiment was designed in seven treatments with the various organic materials and they were only soil (control). soil + fowl dropping (S+F), soil+fowl dropping+rice hull (S+F+R) soil+fowl dropping*saw dust (S+F+S). soil+chemical fertilizer (S+C.F), fowl dropping+rice hull (F+R) and fowl dropping+saw dust (F+S). All the samples of treatment were incubated in $28{\pm}2^{\circ}C$ condition and tested the activity of soil microflora for 84 days The activity of fungi, total bacteria, gram-negative bacteria and actinomycetes showed the highest values at, twenty-first day and the spore-forming bacteria was at forty-second day after incubation. The number of fungi and gram-negative bacteria showed the highest values in the treatment of F+S, the spore-forming bacteria and the actinomycetes were in the S+F+S. and the number of total bacteria was in the F+C.F., but in the treatment of F+R. all the microorganism except fungi showed the lowest values in their numbers. The composition ratio of dead bacteria was higher in the treatments of S+F+R and F+R than in those of others as 70% and 40% respectively. Actinomycetes isolated from the treatments of S+F and S+F+S were identified as Streptomyces sp.. Nocardia sp., Micromonospora sp. Actinomadura sp. and Saccharomonospora sp.

  • PDF

FAME Analysis to Monitor Impact of Organic Matter on Soil Bacterial Populations

  • Kim, Jong-Shik;Joo, Jin-Bee;Weon, Hang-Yeon;Kang, Chang-Seong;Lee, Si-Kyung;Yahng, Chahng-Sool
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.382-388
    • /
    • 2002
  • In order to assess the effects of organic fertilizer on soil microbial community structure and diversity in the greenhouse fields, fatty acid methyl ester (FAME) was analyzed by the MIDI (Microbial ID, Inc., Newark, DE, U.S.A.) system and enumerations were performed. In relation to bacterial division of each sample, low GC Gram-positive bacteria were predominant among bacteria cultured on aerobic bacteria media. On the other hand, alpha subdivision was predominant on proteobacteria of control and OM (organic matter) 1 treated plot, and Flavobacterium spp. existed in OM2 plot on crystal violet media of all samples. Shannon-weaver Index (H) of OM1 plot varied most by 1.9 and 5.0 among bacteria cultured on aerobic bacteria media and crystal violet media, respectively. Our results revealed that addition of the organic wastes to soil led to a highly diverse microbial community, but the excessive amounts of organic and mineral fertilizer applied in the greenhouse fields produced excess nutrients in soil and led to simplification on bacterial populations.

EVALUATION OF MICROBIAL RISK IN SOIL AMENDED WITH ORGANIC FERTILIZERS FROM STABILIZED SWINE MANURE WASTE

  • Han, Il;Lee, Young-Shin;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-135
    • /
    • 2007
  • This study evaluated microbial risk that could develop within soil microbial communities after amended with organic fertilizers from stabilized swine manure waste. For this purpose, we assessed the occurrences and competitiveness of antibiotic resistance and pathogenicity in soil microbial communities that were amended with swine manure wastes stabilized by a traditional lagoon fermentation process and an autothermal thermophilic aerobic digestion process, respectively. According to laboratory cultivation detection analysis, soil applications of the stabilized organic fertilizers resulted in increases in absolute abundances of antibiotic resistant bacteria and of two tested pathogenic bacteria indicators. The increase in occurrences might be due to the overall growth of microbial communities by the supplement of nutrients from the fertilizers. Meanwhile, the soil applications were found to reduce competitiveness for various types of antibiotic resistant bacteria in the soil microbial communities, as indicated by the decrease in relative abundances (of total viable heterotrophic bacteria). However, competitiveness of pathogens in response to the fertilization was pathogens-specific, since the relative abundance of Staphylococcus was decreased by the soil applications, while the relative abundance of Salmonella was increased. Further testes revealed that no MAR (multiple antibiotic resistance) occurrence was detected among cultivated pathogen colonies. These findings suggest that microbial risk in the soil amended with the fertilizers may not be critical to public health. However, because of the increased occurrences of antibiotic resistance and pathogenicity resulted from the overall microbial growth by the nutrient supply from the fertilizers, potential microbial risk could not be completely ruled out in the organic-fertilized soil samples.

Studies on White Clover Yield Increase by Antagonistic Bacteria (길항미상물에 의한 White Clover ( Trifolium repens L. ) 생산성 향상에 관한 연구)

  • Choi, Ki-Chun;Youn, chang;Song, Chae-Eun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.3
    • /
    • pp.187-194
    • /
    • 1998
  • This study was conducted to investigate the effect of antagonistic bacteria and pathogenic fungi on growth and yields of white clover(Trifo1iurn repens L.) in continuous cropping soil(CCS) and non-continuous cropping soil(NCCS). The gowth experiment of white clover was conducted at pots in a vinyl house. White clover was established by seeding into pots of 12 cm in diameter and 9 cm in depth containing 1:l mixture of soil and vermiculite with antagonistic bacteria and pathogenic fungi. In dark culture experiment, white clover lived longer in treatment of antagonistic bacteria than in treatment of control, but lived shorter in CCS than in NCCS. Dry weight of white clover was increased by the inoculation of the antagonistic bacteria(p< 0.05), but decreased by the inoculation of the pathogenic fungi(p< 0.05) both CCS and NCCS. In conclusion, bacterization of white clover with antagonistic bacteria enhances the growth and yield of white clover.

  • PDF

Monitoring of Horizontal Gene Transfer from Agricultural Microorganisms to Soil Bacteria and Analysis of Microbial Community in Soils

  • Kim, Sung-Eun;Moon, Jae-Sun;Choi, Won-Sik;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.563-566
    • /
    • 2012
  • To investigate the possibility of horizontal gene transfer between agricultural microorganisms and soil microorganisms in the environment, Bacillus subtilis KB producing iturin and the PGPR recombinant strain Pseudomonas fluorescens MX1 were used as model microorganisms. The soil samples of cucumber or tomato plants cultivated in pots and the greenhouse for a six month period were investigated by PCR, real-time PCR, Southern hybridization, and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Our data from Southern blotting and T-RFLP patterns suggest that the model bacteria do not give significant impacts on the other bacteria in the pots and greenhouse during cultivation.